Faculty Research Page

David Zusman

David Zusman

Professor Emeritus of Biochemistry, Biophysics and Structural Biology

Lab Homepage: http://mcb.berkeley.edu/labs/zusman/

Env Full Directory Information

Research Interests

The focus of our research was to use Myxococcus xanthusas a model system for the study of signal transduction, motility, and development in a complex bacterial system. M. xanthusis an excellent model bacterial system to address fundamental questions concerning cell-cell signaling and directed movement as cells form multicellular biofilms and fruiting bodies as part of a complex life cycle. For example, we have shown that the Frz signal transduction pathway regulates both vegetative swarming and developmental aggregation by controlling the reversal frequency of cells. We hypothesized that M. xanthus, like E. coliand other chemotaxing bacteria, control directional movements by temporal sensing of stimuli and biasing directional motility. We remained focused on the Frz system since it is probably the master regulator of directional control in this organism. This pathway has multiple inputs and multiple outputs, which are all coordinated. We were trying to understand the nature of these input and output signals, their regulation and how they control the two engines of gliding motility. 

My last projects were also concerned with the study of the motor proteins that power gliding motility in M. xanthus. The motor proteins interact with the Frz chemosensory system and with MreB, an actin homolog. The Frz system regulates cell polarity through MglA, a Ras family GTPase. We examined the localization and dynamics of MglA and the gliding motors in high spatial and time resolution. We determined that MglA localizes not only at the cell poles, but also along the cell bodies, forming a decreasing concentration gradient toward the lagging cell pole. MglA directly interacts with the motor protein AglR, and the spatial distribution of AglR reversals is positively correlated with the MglA gradient. Thus, the motors moving toward lagging cell poles are less likely to reverse, generating stronger forward propulsion.

Current Projects

We have no current projects as I am now retired and my lab is closed. However, I still attend the annual myxobacterial conference and interact with several of my former students and postdoctorals. 

Selected Publications

MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. [Fu G, Bandaria JN, Le Gall AV, Fan X, Yildiz A, Mignot T, Zusman DR and Nan B. (2018). Proc. Natl. Acad. Sci., USA. Pil:201716441.  doi: 10.1073/pnas.1716441115]

Novel Mechanisms power gliding motility [Nan B, and Zusman DR. (2016) Molec. Microbiol.,doi: 10.111/mmi. 13389]

Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior[Berleman JE, Remis, JP, Liu H, Zemla M, Davis A, Worth A, West Z, Zhang A, Park H, Bosneaga E, van Leer B, Tsai W-T, Zusman DR, and Auer M. (2016)ISME J.2016 May 6. doi: 10.1038/ismej.2016.60]

Regulation of cell reversal frequency in Myxococcus xanthusrequires the balanced activity of CheY-like domains in FrzE and FrzF [Kaimer C, and Zusman DR. (2016) Molec. Microbiol.100:379-395. doi:10.1111/mmi.13323]

The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA.  [B. Nan,  J.N. Bandaria, K.Y. Guo, X. Fan, A. Moghtaderi, A. Yildiz, and D.R. Zusman (2015). Proc. Natl. Acad. Sci., USA.  doi: 10.1073/pnas.1421073112]

Functional organization of a multimodular bacterial chemosensory apparatus. [A. Moine,  R. Agrebi, L. Espinosa, J.R. Kirby, D.R. Zusman, T. Mignot and E.M.F. Mauriello (2014). PLoS Genetics10: e1004164. doi: 10.1371]

Bacteria that glide with helical tracks. [B. Nan, M.J. McBride, J. Chen, D.R. Zusman, and G. Oster (2014). Current Biology24: R169-R173. doi: 10.1016]

Phosphorylation-dependent localization of the response regulator FrzZ signals cell reversals in Myxococcus xanthus. [C. Kaimer, and D.R. Zusman (2013). Molec. Microbiol.,88: 740-753]

Flagella stator homologues function as motors for myxobacterial gliding motility by moving in helical trajectories. [B. Nan, J.N. Bandaria, A. Moghtaderi, I-H. Sun, A. Yildiz and D.R. Zusman. (2013). Proc. Natl. Acad. Sci., USA110: E1508-13]

Uncovering the mystery of gliding motility in the myxobacteria. B. Nan, and D.R. Zusman (2011). Ann. Rev. Gen.45: 21-39]

FrzS regulates social motility in Myxococcus xanthusby controlling exopolysaccharide production [J.E. Berleman, J.J. Vicente, A.E. Davis, S.Y. Jiang, Y.E. Seo, and D.R. Zusman (2011). PLoS One6: e23920, p. 1-10]

Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force [B. Nan, J. Chen, J.C. Neu, R.M. Berry, G. Oster and D.R. Zusman (2011). Proc. Natl. Acad. Sci., USA108: 2498-2503]

Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA [E.M.F. Mauriello, F. Mouhamar, B. Nan, A. Ducret, D. Dai, D.R. Zusman and T. Mignot (2010). EMBO J.29: 315-326]

Gliding Motility Revisited: How do the myxobacteria move without flagella? [E.M.F. Mauriello, T. Mignot., Z. Yang, and D.R. Zusman (2010). Microbiol. and Molec. Biol. Revs74: 229-249]

A Multi-protein complex from Myxococcus xanthusrequired for bacterial gliding motility. [B. Nan,  E.M.F. Mauriello, Wong, A., Sun, I.-H., and D.R. Zusman (2010). Molec. Microbiol.76: 1539-1554]

Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. [E.M.F. Mauriello, F. Mouhamar, B.Nan, A. Ducret, D. Dai, D.R. Zusman* and T. Mignot* (2010). EMBO J.29: 315-326]

AglZ regulates adventurous (A-) motility in Myxococcus xanthusthrough its interaction with the cytoplasmic receptor, FrzCD. [ E.M.F. Mauriello, B. Nan, and D.R. Zusman (2009). Molec. Microbiol.72: 964-977]

Localization of a bacterial cytoplasmic receptor is dynamic and changes with cell-cell contacts. [E.M.F. Mauriello,  D.P. Astling, O. Sliusarenko, and D.R. Zusman (2009). Proc. Natl. Acad. Sci., USA106: 4852-4857]

Site-specific receptor methylation of FrzCD in Myxococcus xanthusis controlled by a tetra-trico peptide repeat (TPR) containing regulatory domain of the FrzF methyltransferase. [A.E. Scott, E. Simon, S.K. Park, P. Andrews, and D.R. Zusman (2008) Molec. Microbiol.69: 724-735] 

The receiver domain of FrzE, a CheA-CheY fusion protein, regulates the CheA histidine kinase activity and downstream signaling to the A- and S-motility systems of Myxococcus xanthus. [Y.F. Inclán,  S. Laurent, and D.R. Zusman (2008)  Molec. Microbiol.,68: 1328-1339] 

EspA, an orphan hybrid protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus. [P.I. Higgs, S. Jagadeesan, P. Mann, and D.R. Zusman (2008) J. Bacteriol.,190: 4416-4426]

Evidence that Focal Adhesion Complexes Power Bacterial Gliding Motility. [T. Mignot,  J.W. Shaevitz, P. Hartzell, and D.R. Zusman (2007)  Science,315: 853-856]

FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. [Y.F. Inclán,  H. Vlamakis, and D.R. Zusman (2007) Molecular Microbiol.65: 90-102]

Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. [T. Mignot, T.,, J.P. Merlie, Jr., and D.R. Zusman (2007) Molecular Microbiol.65: 363-372]

An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthussocial motility protein FrzS. [J.S. Fraser, J.P. Merlie Jr., N. Echols, S.R. Weisfield, T. Mignot, D.E. Wemmer, D.R. Zusman and T. Alber (2007)Molec. Microbiol.65: 317-332]

Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. [E.A. Stein, K. Cho, P.I. Higgs and D.R. Zusman (2006) Molec. Microbiol.,60: 1414-1431]

Regulated pole-to-pole oscillations of a bacterial gliding motility protein. [T. Mignot, J.P. Merlie, Jr. and D.R. Zusman (2005) Science,310: 855-857]

 

Photo credit: Mark Hanson at Mark Joseph Studios.

Last Updated 2019-01-22