header

The Martin Lab

UC Berkeley

2025

Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. (2025) Nat Rev Mol Cell Biol26(2):26(2):104-122.
doi: 10.1038/s41580-024-00778-0 PMID: 39362999; PMCID: PMC11772106

2024

Yori Restrepo S, Martin A. Recombinant Expression of Photo-crosslinkable 26S Proteasome Base Subcomplex. (2024) bioRxiv
doi: https://doi.org/10.1101/2024.12.16.628829

Sascha J. Amann, Ken Dong, Josef Roehsner, Dominik Krall, Irina Grishkovskaya, Harald Kotisch, Alexander Schleiffer, Elisabeth Roitinger, Andrea Pauli, Andreas Martin, David Haselbach.PITHD1: An Endogenous Inhibitor of the 26S Proteasome During Cellular Dormancy. (2024) bioRxiv
doi: https://doi.org/10.1101/2024.12.04.626795

Arkinson C, Gee CL, Zhang Z, Dong KC, Martin A. Structural landscape of AAA+ ATPase motor states in the substrate-degrading human 26S proteasome reveals conformation-specific binding of TXNL1. (2024) bioRxiv
doi:10.1101/2024.11.08.622731 PMID: 39574680; PMCID: PMC11580985

Htet ZM, Dong KC, Martin A. The deubiquitinase Rpn11 functions as an allosteric ubiquitin sensor to promote substrate engagement by the 26S proteasome. (2024) bioRxiv
doi: 10.1101/2024.10.24.620116 PMID: 39484543; PMCID: PMC11527175.

Arkinson C, Dong KC, Gee CL, Costello SM, Marqusee S, Martin A. Nub1 traps unfolded FAT10 for ubiquitin-independent degradation by the 26S proteasome. (2024) bioRxiv.
doi: 10.1101/2024.06.12.598715 PMID: 38915702

2023

López-Alfonzo EM, Saurabh A, Zarafshan S, Pressé S, Martin A. Substrate-interacting pore loops of two ATPase subunits determine the degradation efficiency of the 26S proteasome. (2023) bioRxiv
doi: https://doi.org/10.1101/2023.12.14.571752

Williams C, Dong KC, Arkinson C, Martin A. Preparation of site-specifically fluorophore-labeled polyubiquitin chains for FRET studies of Cdc48 substrate processing. (2023) STAR Protoc 4(4):102659.
doi: 10.1016/j.xpro.2023.102659 PMID: 37889757; PMCID: PMC10630674.

Williams C, Dong KC, Arkinson C, Martin A. The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48. (2023) Mol Cell 83(5):759-769.e7.
doi: 10.1016/j.molcel.2023.01.016 PMID: 36736315; PMCID: PMC9992269.

Cameron's cover

Xie G, Dong KC, Worden EJ, Martin A. High-Throughput Assay for Characterizing Rpn11 Deubiquitinase Activity. (2023) Methods Mol Biol 2591:79-100.
doi: 10.1007/978-1-0716-2803-4_6. PMID: 36350544.

2022

Jonsson E, Htet ZM, Bard JAM, Dong KC, Martin A. Ubiquitin modulates 26S proteasome conformational dynamics and promotes substrate degradation. (2022) Sci Adv 8(51):eadd9520.
doi: 10.1126/sciadv.add9520 PMID: 36563145; PMCID: PMC9788759.

2021

Jonsson E, Htet ZH, Bard JAM, Dong K & Martin A. Ubiquitin modulates 26S proteasome conformational dynamics and promotes substrate degradation. (2021) bioRxiv
doi:10.1101/2021.08.18.456915

Didychuk AL, Gates SN, Gardner MR, Strong LM, Martin A, Glaunsinger BA. A pentameric protein ring with novel architecture is required for herpesviral packaging. (2021) Elife 10:e62261.
doi: 10.7554/eLife.62261 PMID: 33554858; PMCID: PMC7889075.

Chen X, Htet ZM, López-Alfonzo E, Martin A, Walters KJ. Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. (2021) FEBS J 288(18):5231-5251.
doi:10.1111/febs.15638 PMID: 33211406; PMCID: PMC8131406.

2020

Castanzo DT, LaFrance B & Martin A. The AAA+ ATPase Msp1 is a processive protein translocase with robust unfoldase activity. (2020) Proc Natl Acad Sci USA 117(26):14970-14977.
doi: 10.1073/pnas.1920109117

Carroll EC, Greene ER, Martin A & Marqusee SM. Site-specific ubiquitination affects protein energetics and proteasomal degradation. (2020) Nature Chemical Biology 16:866–875
doi: 10.1038/s41589-020-0556-3
[News and Views: Unraveling proteasome engagement]

Greene ER, Dong KC & Martin A. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. (2020) Curr Opin Struct Biol 61:33-41.
doi: 10.1016/j.sbi.2019.10.004

2019

Greene ER, Goodall EA, de la Peña AH, Matyskela ME, Lander GC & Martin A. Specific lid-base contacts in the 26s proteasome control the conformational switching required for substrate degradation. (2019) eLife 8:e49806.
doi: 10.7554/eLife.49806

Gates SN & Martin A. Stairway to translocation: AAA+ motor structures reveal the mechanisms of ATP‐dependent substrate translocation. (2019) Protein Science 29(2):407-419.
doi: 10.1002/pro.3743

Blythe E.E., Gates S.N., Deshaies R.J., Martin A. Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate Processing. (2019) Structure 27(12):1820-1829.e4.
doi: 10.1016/j.str.2019.09.011 PMID: 31623962; PMCID: PMC6929323.

Bard, J.A.M., Bashore, C., Dong, K.C. & Martin, A. The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation. Cell 177:1-13 (2019).
doi:10.1016.cell.2019.02.031

Olszewski, M. M., Williams, C., Dong, K. C. & Martin, A. The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome. (2019) Communications Biology 2:29.
doi: 10.1038/s42003-019-0283-z

2018

de la Peña AH*, Goodall EA*, Gates SN*, Lander GC, Martin A. Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis–driven translocation. (2018) Science 362:6418.
doi: 10.1126/science.aav0725

Proteasome in Action

Bard JAM & Martin A. (2018) Recombinant Expression, Unnatural Amino Acid Incorporation, and Site-Specific Labeling of 26S Proteasomal Subcomplexes. In: Mayor T., Kleiger G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol. 1844. Humana Press, New York, NY.
doi: 10.1007/978-1-4939-8706-1_15

Bard JAM*, Goodall EA*, Greene ER, Jonsson E, Dong KC, Martin A. Structure and Function of the 26S Proteasome. (2018) Annu Rev Biochem 87:697-724.
doi: 10.1146/annurev-biochem-062917-011931

Gardner BM, Castanzo DT, Chowdhury S, Stjepanovic G, Stefely MS, Hurley JH, Lander GC, Martin A. The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. (2018) Nat Commun 9:135.
doi: 10.1038/s41467-017-02474-4

2017

San Martín Á, Rodriguez-Aliaga P, Molina JA, Martin A, Bustamante C & Baez M. Knots can impair protein degradation by ATP-dependent proteases. (2017) Proc Natl Acad Sci USA 114:9864–9869.
doi: 10.1073/pnas.1705916114

Worden EJ, Dong KC & Martin A. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome. (2017) Mol Cell 67:1–22.
doi: 10.1016/j.molcel.2017.07.023

2016

Rodriguez-Aliaga P, Ramirez L, Kim F, Bustamante C & Martin A. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP. (2016) Nat Struct Mol Biol 23:974–981.
doi: 10.1038/nsmb.3298

Dambacher CM*, Worden EJ*, Herzik MA, Martin A & Lander GC. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. (2016) eLife 5:1-17.
doi: 10.7554/eLife.13027

2015

Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC & Martin A. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. (2015) Nat Struct Mol Biol 22:712–719.
doi: 10.1038/nsmb.3075

Yang B, Stjepanovic G, Shen Q, Martin A & Hurley JH. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. (2015) Nat Struct Mol Biol 22:492–498
doi: 10.1038/nsmb.3015

Gardner BM, Chowdhury S, Lander GC, Martin A. The Pex1/Pex6 Complex Is a Heterohexameric AAA+ Motor with Alternating and Highly Coordinated Subunits. (2015) J Mol Biol 427:1375-1388.
doi: 10.1016/j.jmb.2015.01.019 PMID: 25659908; PMCID: PMC4355278.

2014

Worden EJ, Padovani C & Martin A. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. (2014) Nat Struct Mol Biol 21:220–227.
doi: 10.1038/nsmb.2771 PMID: 24463465.

Nyquist, K. & Martin, A. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. (2014) Trends Biochem Sci 39, 53-60.
10.1016/j.tibs.2013.11.003 PMID: 24316303; PMCID: PMC3946816.

2013

Sen M*, Maillard RA*, Nyquist K*, Rodriguez-Aliaga P, Pressé S, Martin A & Bustamante C. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. (2013) Cell 155:636-46.
doi: 10.1016/j.cell.2013.09.022 PMID: 24243020; PMCID: PMC3901371.

Beckwith R, Estrin E, Worden EJ & Martin A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. (2013) Nat Struct Mol Biol 10:1164-72. doi: 10.1038/nsmb.2659 PMID: 24013205; PMCID: PMC3869383.

AAA+ Asymmetries

Estrin E, Lopez-Blanco JR, Chacon P & Martin A. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. (2013) Structure 21:1-12.
doi: 10.1016/j.str.2013.06.023 PMID: 23911091.

Matyskiela ME, Lander GC & Martin A. Conformational switching of the 26S proteasome enables substrate degradation. (2013) Nat Struct Mol Biol 20:781-8.
doi: 10.1038/nsmb.2616 PMID: 23770819; PMCID: PMC3712289.

Lander GC, Martin A & Nogales E. The proteasome under the microscope: the regulatory particle in focus. (2013) Curr Opin Struct Biol 23:243-51.
doi: 10.1016/j.sbi.2013.02.004PMID: 23498601; PMCID: PMC3676703.

Matyskiela ME & Martin A. Design principles of a universal protein degradation machine. (2013) J Mol Biol 425:199-213.
doi: 10.1016/j.jmb.2012.11.001 PMID: 23147216; PMCID: PMC3546117.

2012

Lander GC*, Estrin E*, Matyskiela ME*, Bashore C, Nogales E & Martin A. Complete subunit architecture of the proteasome regulatory particle. (2012) Nature 482:186-91.
doi: 10.1038/nature10774 PMID: 22237024; PMCID: PMC3285539.

2011

Maillard RA, Chistol G, Sen M, Righini M, Tan J, Kaiser CM, Hodges C, Martin A & Bustamante C. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. (2011) Cell 145:459-69.
doi: 10.1016/j.cell.2011.04.010 PMID: 21529717; PMCID: PMC3686100.

2009

Glynn, SE, Martin A, Nagar AR, Baker TA & Sauer RT. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. (2009) Cell 139:744-56.
doi: 10.1016/j.cell.2009.09.034 PMID: 19914167; PMCID: PMC2778613.

2008

Martin A, Baker TA & Sauer RT. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. (2008) Nat Struct Mol Biol 15:1147-51.
doi: 10.1038/nsmb.1503 PMID: 18931677; PMCID: PMC2610342.

Martin A, Baker TA & Sauer RT. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes. (2008) Nat Struct Mol Biol 15, 139-45.
doi: 10.1038/nsmb.1380 PMID: 18223658.

Martin A, Baker TA & Sauer RT. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. (2008) Mol. Cell 29:441-50.
doi: 10.1016/j.molcel.2008.02.002 PMID: 18313382; PMCID: PMC2323458.

2007

Martin A, Baker TA & Sauer RT. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. (2007) Mol Cell 27:41-52. doi: 10.1016/j.molcel.2007.05.024 PMID: 17612489; PMCID: PMC2074893.

2005

Martin A, Baker TA & Sauer RT. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. (2005) Nature 437:1115-20.
doi: 10.1038/nature04031 PMID: 16237435.

aside
footer