• Reisenman, C.E., and Scott, K. (2019). Food-derived volatiles enhance consumption in
Drosophila melanogaster. J. Exp. Biol. 222, jeb.202762.
• Youn, H., Kirkhart, C., Chia, J., and Scott, K. (2018). A subset of octopaminergic neurons
that promotes feeding initiation in Drosophila melanogaster. PLoS One 13, e0198362.
• Scott, K. (2018). Gustatory Processing in Drosophila melanogaster. Annu. Rev. Entomol. 63,
15-30.
• Cheung, S.K., and Scott, K. (2017). GABAA receptor-expressing neurons promote
consumption in Drosophila melanogaster. PLoS One 12, e0175177.
• Kim, H., Kirkhart, C., and Scott, K. (2017). Long-range projection neurons in the taste
circuit of Drosophila. Elife 6, e23386.
• Jourjine, N., Mullaney, B.C., Mann, K., and Scott, K. (2016). Coupled Sensing of Hunger and
Thirst Signals Balances Sugar and Water Consumption. Cell 166, 855-866.
• Kallman, B.R., Kim, H., and Scott, K. (2015). Excitation and inhibition onto central
courtship neurons biases Drosophila mate choice. Elife 4, e11188.
• Harris, D.T., Kallman, B.R., Mullaney, B.C., and Scott, K. (2015). Representations of Taste
Modality in the Drosophila Brain. Neuron 86, 1449-1460.
• Kirkhart, C., and Scott, K. (2015). Gustatory learning and processing in the Drosophila
mushroom bodies. J. Neurosci. 35, 5950-5958.
• Pool, A.H., Kvello, P., Mann, K., Cheung, S.K., Gordon, M.D., Wang, L., and Scott, K. (2014).
Four GABAergic interneurons impose feeding restraint in Drosophila. Neuron 83, 164-177.
• Pool, A.H., and Scott, K. (2014). Feeding regulation in Drosophila. Curr. Opin. Neurobiol. 29,
57-63. Review.
• Mann, K., Gordon, M.D., and Scott, K. (2013). A pair of interneurons influences the choice
between feeding and locomotion in Drosophila. Neuron 79, 754-765.
• Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L., and Scott, K. (2012). Contact
chemoreceptors mediate male-male repulsion and male-female attraction during
Drosophila courtship. Cell 149, 1140-1151.
• Manzo, A., Silies, M., Gohl, D.M., and Scott, K. (2012). Motor neurons controlling fluid
ingestion in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 109, 6307-6312.
• Marella, S., Mann, K., and Scott, K. (2012). Dopaminergic modulation of sucrose
acceptance behavior in Drosophila. Neuron 73, 941-950.
• Scott, K., and Hammarlund, M. (2012). Science in Suzhou: establishment and function of
neural circuits. EMBO Rep. 13, 286-288.
• Scott, K. (2011). Out of thin air: sensory detection of oxygen and carbon dioxide. Neuron
69, 194-202. Review.
• Masek, P., and Scott, K. (2010). Limited taste discrimination in Drosophila. Proc. Natl.
Acad. Sci. U. S. A. 107, 14833-14838.
• Cameron, P., Hiroi, M., Ngai, J., and Scott, K. (2010). The molecular basis for water taste in
Drosophila. Nature 465, 91-95.
• Gordon, M.D., and Scott, K. (2009). Motor Control in a Drosophila Taste Circuit. Neuron 61,
373-384.
• Gordon, M.D., Manzo, A., and Scott, K. (2008). Fly neurobiology: development and function
of the brain. Meeting on the Neurobiology of Drosophila. EMBO Rep. 9, 239-242.
• Fischler, W., Kong, P., Marella, S., and Scott, K. (2007). The detection of carbonation by the
Drosophila gustatory system. Nature 448, 1054-1057.
• Marella, S., Fischler, W., Kong, P., Asgarian, S., Rueckert, E., and Scott, K. (2006). Imaging
taste responses in the fly brain reveals a functional map of taste category and behavior.
Neuron 49, 285-295.
• Scott, K. (2005). Taste recognition: Food for thought. Neuron 48, 455-464.Review.
• Scott, K. (2004). The sweet and the bitter of mammalian taste. Curr. Opin. Neurobiol. 14,
423-427. Review.
• Wang, Z., Singhvi, A., Kong, P., and Scott, K. (2004). Taste representations in the
Drosophila brain. Cell 117, 981-991.