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Functional architecture of auditory cortex
Heather L Read*, Jeffery A Winer and Christoph E Schreiner**

Three complementary approaches demonstrate new types of
organization in rodent, feline and primate auditory cortex, as
well as differences in processing between auditory and visual
cortex. First, connectional work reveals patterns of
thalamocortical and corticocortical input unique to the auditory
cortex. Second, physiological studies find multiple, interleaved
auditory processing modules related to corticocortical
connections and embedded in the isofrequency gradient.
Third, functional analyses demonstrate independent
processing streams for sound localization and identification
analogous to the ‘what’ and ‘where’ streams in visual cortex,
although the modular arrangements are modality-specific.
Taken together, these data show that the auditory cortex has
common and unique functional substrates.
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Abbreviations
AAF anterior auditory field

Al primary auditory cortex

BB broadband

CF characteristic frequency

fMRI functional magnetic resonance imaging
IC inferior colliculus

MGB medial geniculate body

MGBm medial division of the MGB
MGBv ventral division of the MGB
NB narrowband

PFC prefrontal cortex

Qo inverse bandwidth

SPLs  sound pressure levels

Vi primary visual cortex

ViI second visual cortical area

Introduction

The essential uniformity in sensory neocortical structure
might support the idea that the cortex is stereotyped in its
layers and internal organization [1]. If so, then corresponding
areas in different modalities could follow similar principles
of physiology, connectivity and function, varying largely in
the receptor populations that define them. Appealing as
this proposition may be, several lines of evidence reviewed
here suggest that the physiology and connectivity of the
primary auditory cortex (Al) differs significantly from that
of primary visual cortex (VI), which serves as a frame of

reference for this account. For example, layer IV spiny
stellate cells are a preferential target of thalamic input in
VI [2], whereas in Al, pyramidal cells in deep layer III and
layer IV cells receive medial geniculate body (MGB) input
[3°]. These neuronal classes have specific, and perhaps
unique, functions. Another difference is that layer III
neurons in VI have almost exclusively ipsilateral cortico-
cortical projections [4], whereas many layer III cells in Al
are commissural [5]. Here, we delineate some of the
parallels and differences between auditory and visual
cortex. A related issue concerns the status of auditory areas
beyond Al and how these contribute to hearing and
sensorimotor behavior. Our aim is to understand how
auditory cortex participates in tasks ranging from local
information processing to higher-order function, including
how descending projections influence targets as peripheral
as the cochlea [6].

Functional organization of Al

There is consensus that the one-dimensional gradient of
characteristic frequency (CF) spanning the cochlear
epithelium is represented topographically across Al. CF is
the frequency at which a neuron responds most strongly at
low sound pressure levels (SPLs). CF topography is highly
conserved across species [7] and subregions representing
biologically significant CFs are often enlarged, much
like the foveal magnification in VI [8]. The relationship
between CF and cortical area is logarithmic and its slope is
species-specific (e.g. the 2-16 kHz region is nearly
three-fold greater in cat Al [9] than in rat Al [10]). The
frequency response areas of synaptically paired neurons in
the ventral division of the MGB (MGBv) and Al are over-
lapping, and spectral properties can be highly conserved
(as in VI) or show convergence of CFs within one-third of
an octave [11°]. This suggests considerable conservation of
excitatory frequency information in the feedforward
process, as information flows sequentially along serial
synaptic stations from subcortical to cortical sites. An
extended subregion of cortical space is dedicated to iso-CF
contours oriented orthogonal to the CF-gradient. A large
set of contiguous neurons are tuned to one CF, and these
cells form elongated iso-CF contours (Figure 1a). The
iso-CF axis is expanded in some species (e.g. the cat’s
iso-CF dimension is three times as large as that of the rat
[12]). Frequency representation at the level of single
neurons is labile, contingent on experience, and susceptible
to long-term reorganization [13,14*,15°]. The auditory
representation is plastic in that it is input-dependent on
subcortical [16] and cortical [17] sources.

The iso-CF axis has an internal functional organization
resembling the modular organization in VI. Al neurons
respond to a narrow range of frequencies at low SPLs. At
higher SPLs, frequency responses can remain narrowband
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Figure 1
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Auditory cortex functional organization. (@) Modular arrangement of
receptive field properties and intrinsic cortical connections in Al. CF and
inverse bandwidth (Q,,) were mapped over a 3 x 3 mm region in layers
Il and IV; the maps are stacked to show the spatial relationship of these
two metrics. In the cochleotopic map, the CF gradient increases from
caudal to rostral (as illustrated with one-third octave iso-frequency
contours in progressively lighter shades of gray). Input from the MGBv to
Al (gray in layers Ill and IV) is arrayed along the caudal-rostral axis of Al.
Their CFs match the synaptic targets in Al & one-third of an octave.
MGBYV neurons project non-uniformly along the isofrequency axis,
forming periodic clusters of axon terminals. Intrinsic corticocortical
connections between layer Il neurons (black circles and arrows) are
uniform but limited in spread across the CF gradient, and periodic
across the isofrequency axis. The spectral integration map is an
interpolated map of Qy for the same recording positions. Two
subdomains with NB neurons (regions cNB and d1) and two interleaved
subdomains with BB neurons fill the entire cochleotopic representation.
In the spectral integration map, NB and BB domains are indicated as

gray or white, respectively. The bandwidth receptive field dimension
covaries with several other receptive field properties; for simplicity, only
bandwidth is shown. The gray NB region appears to extend across all
CFs, and therefore constitutes an iso-bandwidth representation.
Horizontal cortical connections (arrows) link neurons centered about the
same CF (isofrequency neurons) and with similar bandwidth (e.g. d1
projects to the cNB subdomain). In dorsal Al, Qy is also clustered
(regions d3, d4, light blue panels) but its thalamic inputs and horizontal
connectivity is less well understood. (b) Cat auditory cortical areas. The
‘a’ denotes the locus and approximate scale of the cortical cube shown
in the first panel. Cochleotopic regions (light blue) receive input mainly
from MGBv. Non-cochleotopic regions (gray) are targets of other MGB
subdivisions. All areas receive sparse parallel input from MGBm (not
shown). All, second auditory cortical area; C, caudal; D, dorsal; EPD,
posterior ectosylvian gyrus, dorsal part; EPI, posterior ectosylvian gyrus,
intermediate part; EPV, posterior ectosylvian gyrus, ventral part; Ins,
insular cortex; P, posterior field; SF, suprasylvian fringe; Te, temporal
cortex; Ve, ventral auditory area; VP, ventral posterior auditory area.

(NB) or extend to over five octaves. A continuum of
bandwidth values [18,19°,20] forms alternating NB and
broadband (BB) domains along the iso-CF axis of Al in cat
and monkey [21°,22,23°]. Tracer injections in the NB com-
partment label clusters of neurons aligned to the iso-CF
contour [23°,24]. The iso-CF horizontal connections are
in register to bandwidth compartments, such that NB
neurons receive convergent long-range (>1 mm) input
primarily from neurons with similar bandwidths and CFs
(Figure 1a). This overlapping pattern of response properties
and connectivity creates modules aligned along the iso-CF
axis in the cat. Thalamocortical axons also have a compart-
mental distribution, with alternating dense and sparse
terminal fields [25,26] in the iso-CF dimension [27].

Like VI, Al contains several representations of the sensory
domain. How are these properties interrelated? Binaural
response type, intensity threshold, operating range, and
frequency modulation rate are each embedded within the

1s0-CF axis [18,28,29,30°,31°,32°]. Broadband neurons
often have a higher response threshold, so that bandwidth
and threshold topographies are correlated [33]. Thus,
bandwidth modules may covary with multiple gradients for
SPL or operating range [34,35]. Binaural properties (coded
as time and intensity differences) vary periodically along
the iso-CF axis [36]; however, their relationship to
bandwidth modules remains unclear. The relative size
of binaural time and intensity pathways reflects acoustic
experience and the species’ audibility range [37,38°].
Likewise, the expanded iso-CF dimension in cat and
monkey extends concomitantly over binaural, bandwidth
and intensity representations; how these might relate to
auditory experience such as differences in binaural
processing is unknown. A gradient representing a range of
interaural intensities is aligned to the iso-CF axis in the
pallid bat [37]. A second gradient for interaural time differ-
ence processing may exist along the iso-CF axis for species
with an extended range of low frequencies [39°]. It is
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unknown whether bandwidth and binaural modules are
independent, like the visual representations of ocular
dominance and orientation [40].

Do the bandwidth modules emerge from new peripheral
sensory machinery or are they a consequence of novel,
behaviorally driven or computational convergence? Other
than changes in cochlear frequency range, there is little
evidence for the evolution of new peripheral sensory
machinery in the auditory system, although two contiguous
cochlear representations in the cochlear nucleus arise from
dorsal and ventral spiral ganglion cells [41]. Emergence of
novel spectral integration properties in the cortex may
embody transformations between correlated thalamic and
cortical neurons [11°,42°]. No contiguous bandwidth modules
have been described subcortically; however, spectral
bandwidth diversity [43] and topographic gradients exist in
the MGBv [44] and the central nucleus of the inferior
colliculus (IC) [45]. Cortical BB response properties develop
late in cats [46,47], perhaps because in this species thalamo-
cortical or corticocortical convergence contribute to the
emergence of modularity [19°].

Cortical connectivities

There is no consensus on how auditory cortex is defined.
Because only four of the approximately 14 areas recognized
in the cat have a cochleotopic map [48] (Figure 1b), this
criterion is of limited value for such a definition. Accordingly,
a combination of physiological properties, cytoarchitectonics,
histochemistry, thalamocortical and corticocortical connection
patterns, or neuroimaging methods collectively provide
better points of reference for definition. Evidence exists
that some of the areas regarded here as unitary contain
further subdivisions [49,50]. Cochleotopic and non-
cochleotopic cortices have distinct and robust thalamocortical
input profiles [27] that are largely conserved even after
peripheral insult [51]. This connectional stability contrasts
with behavioral plasticity in the Al of ferrets when retinal
ganglion cells are redirected onto the MGB [52]. Such
manipulations can also affect cortical local circuitry even
when the thalamus is unchanged [53].

The four cochleotopic cortical fields (Figure 1b, in blue)
receive most of their thalamic input in layers IIIb and IV,
much like the C-laminae to VI projection [54].
Non-cochleotopic cortices receive input from many more
thalamic subdivisions, most of whose cells have broader
tuning; their axons terminate more uniformly and in more
layers [27]. Al and the anterior auditory field (AAF), like
VI and the second visual cortical area (VII), appear to
be closely allied as they respond with shorter latencies,
have simpler response profiles [55,56], and are densely
interconnected [57,58].

Neurons of the medial division of the MGB (MGBm)
provide parallel thalamic input to all auditory cortices. The
MGBm projection system differs from MGBv in several
ways. First, it terminates in layers I, I1I, IV and VI. Second,

it is multisensory and capable of long-term potentiation
[59]. Third, it projects to all auditory cortical areas and
beyond. Some large medial division axons innervate layer
Ia, where they evoke early responses [60°] among a
population whose cells are nearly all y-amino butyric acid
(GABA)-positive [61]. Other input to rabbit layer I arises
from the same thalamocortical axons terminating in
layers II-V, implying concomitant activation across
1500 um-wide tangential zones [62] and perhaps more
than one mode of lemniscal thalamocortical activation.
Even layer V, regarded widely as independent of thalamic
input, receives more than 10% of the total boutons [27].
"This belies the notion that the thalamus is a simple relay,
or that its input reaches only a few cortical layers.

Massive auditory corticofugal feedback [63-66] may
constitute several parallel pathways [64]. This influence
reaches the MGB [67], the IC [68], and rat olivocochlear
neurons [6] monosynaptically. The corticothalamic projection
arises from heterogeneous pyramidal cells in layers Va, Vc
and VI, and is as divergent as the thalamocortical projection
[69]. All areas send giant boutons chiefly to non-
cochleotopic thalamic regions [70,71]. Corticothalamic
input affects many facets of physiology [72°] and signal
selection [73]. Cortical output to the basal ganglia [74°]
may influence motor planning or cognition.

The corticocollicular system arises from homogeneous
layer V cells situated between the sublayers that project to
the MGB [75]; few neurons project to both the MGB and
the IC [76]. Cortical projections chiefly target IC nuclei
outside the cochleotopic pathway [68]. In contrast to corti-
cothalamic axons, these projections are more segregated,
convergent and homogeneous. Auditory cortex neurons
also project to the dorsal cochlear nucleus [63,77], although
these projections are neither large nor dense. The
corticofugal system modulates the frequency tuning of
thalamic and collicular neurons; such effects appear greater
in subregions with highly magnified CF domains [78].

Functional organization beyond Al

The present view of Al functional and structural organization
suggests several parallel and serial input/output systems.
These can be identified by their laminar arrangement [27],
nuclear targets [67], synaptic effects [79°], cellular speci-
ficity [3°], histochemical profiles [80], and receptive field
characteristics [81°]. The impact of these streams on other
auditory areas is unclear.

Optical recording in the guinea pig [82°] and chinchilla
[83°] found several cortical fields that differ in their
cochleotopy, response latencies and spectral integration
properties. The spatial spread of activation from the
cochleotopic fields suggests the presence of several path-
ways. Electrophysiological and neuroanatomical studies
in the gerbil [84] and guinea pig [85,86] revealed that
fields Al and AAF (Figure 1b) share cytoarchitectonic,
myelo-architectonic, and histochemical patterns usually
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associated with cochleotopic areas. Surrounding regions
have other connectional patterns and may also differ in
their functional or multisensory organization. Assignment
of areas to belt and parabelt regions, as in the scheme
adopted for monkeys [87°], is feasible but requires more data.

Physiological studies in cat and monkey find many differ-
ences between cortical areas that may clarify their role in
the several functional streams. A reevaluation of cat posterior
field physiology [88°] (Figure 1b) found more complex
inhibitory bands than in Al, a range of tuning shapes, and
spectral and temporal properties suggesting more informa-
tion convergence and more complex integration than in Al
In the monkey, the rostral and the caudal-medial fields also
differ from Al [89] in their sensitivity to the spatial location
of a sound source. This supports the idea of a separate
spatial processing pathway [20,89]. Evidence for increased
spatial processing in the caudal belt area contrasts with
enhanced selectivity for call types to a set of natural
monkey vocalizations in the anterior belt areas [31°].

Whether spatial and spectral receptive field properties in
non-primary cortices are inherited from Al or undergo
extensive remodeling remains to be secen. No systematic
representation besides cochleotopy, as described in cat
[18], squirrel monkey [21°] and owl monkey Al [90], has
been seen in non-primary areas. It remains vital to
determine whether specialized cortical regions (e.g. the
frequency-modulated FM-FM area) in echolocating bats
are functionally or anatomically analogous to fields in cat
and monkey [91°]. Area-specific suppression of activity can
affect both spatial and spectral discrimination abilities
[92,93°] indicating the behavioral relevance of these repre-
sentations. The differential contribution of input, output,
or representational alterations on these properties is unknown.

Evidence for different auditory fields in subhuman species
was augmented by work in human auditory cortex, where
multiple regions were identified in functional magnetic
resonance imaging (fMRI) and magnetoencephalographic
studies [94°,95]. Click-evoked potentials recorded from
pial-surface electrodes on the lateral superior temporal
gyrus of awake humans reveal an acoustically responsive
region distinct from the auditory fields on Heschl’s gyrus
[96]. Differences in location, anesthetic effects, and the
time course of response recovery imply that it may
belong to the non-cochleotopic region. Cochleotopic and
non-cochleotopic (core-belt) distinctions [97°] reflect
differences in processing NB and BB stimuli [98]. A dorsal
cortical region, potentially involved in spectral motion [99],
suggests that the search for functionally homologous
regions in monkey and human is incomplete [100]. Further
parallels between feline, human, and subhuman primate
auditory cortex are emerging from imaging [97°], cyto-
architectonic [87°], and tract-tracing [101] approaches.
The evidence confirms that multiple areas exist [102].
Moreover, histochemical and metabolic staining delineate
related areas in macaques and chimpanzees [87°] and

humans [87°,103]. Deposits of diffusible tracers label
anisotropic corticocortical projections [101] like those in cat
[104], and a hierarchical plan has been proposed for primates
and other species [97°]. Further parallels include clustered
thalamocortical connections whose laminar distribution in
macaque Al [26] resembles the pattern in the cat.

Multiple processing streams in auditory cortex
In the visual system, a global distinction between a dorsal
cortical pathway associated with the analysis of motion
(where) and a ventral form and color (what) stream has
been proposed [105,106]. This hypothesis is strengthened
by findings that link the origins of each pathway to
anatomically, histochemically and functionally distinct
compartments in VI and VII [106], to thalamic targets in
the parallel magnocellular and parvocellular systems [107],
as well as to other corticofugal projections upon premotor
structures [108]. By analogy, corticocortical acoustic
outflow forms independent streams that target rostral and
caudal domains in prefrontal cortex (PFC) that serve
different functions [109,110]. Rostral and orbital PFC areas
are connected to rostral belt and parabelt areas, whereas
the caudal and inferior convexities are connected with the
caudal belt and parabelt. Functional divergence between
these two streams is supported by differences in local
connections, physiology, and differences in PFC targets. A
physiological evaluation of PFC finds a circumscribed
region with many neurons that are predominantly or
exclusively auditory [111°].

T'he distinction between a dorsal, localization pathway and
a ventral, identification pathway in primates rests upon
the role of the caudal belt region for spatial information
processing [31°,90,110] and the rostral belt’s preference
for complex vocalizations [31°,109]. Other distinctions
between them come from imaging studies in humans
showing that phonetic and object recognition, speaker
identification [112], pitch tasks [113°] and spectrotemporal
feature processing [114°] localize to the ventral pathway,
whereas spectral motion in phonemic [112] and sound
location tasks [113°] resides in the dorsal pathway.
Confirmation of the independence of these pathways, the
role of the modular organization of bandwidth in Al, and
the influence of the cochleotopic and non-cochleotopic
MGB projections requires further work on functional
properties and their prospective cortical segregation.
Species without an expanded iso-CF axis in Al have other
auditory cortical fields; perhaps Al modularity represents a
recent evolutionary adaptation [115].

Conclusions

A more refined picture of the function and organization of
auditory cortex is emerging from different lines of enquiry.
Anatomical distinctions between several types of input/
output relationships and connectivities are paralleled by
physiologically defined differences. Direct relationships
between anatomical and physiological substrates for parallel
and serial processing streams remain to be firmly established;
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however, both approaches confirm local modularity and
suggest a global multplicity of processing streams.
Common themes in visual and auditory cortical organization,
including several processing streams and the functional
plasticity of cochleotopic auditory cortex, support general,
modality-independent principles. Other evidence for
modality-specific anatomical and physiological properties
constrains these parallels.
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