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The super-phylum Lophotrochozoa contains the plurality of extant animal phyla and exhibits a corresponding
diversity of adult body plans. Moreover, in contrast to Ecdysozoa and Deuterostomia, most lophotrochozoans
exhibit a conserved pattern of stereotyped early divisions called spiral cleavage. In particular, bilateral
mesoderm inmost lophotrochozoan species arises from the progeny of micromere 4d, which is assumed to be
homologous with a similar cell in the embryo of the ancestral lophotrochozoan, more than 650 million years
ago. Thus, distinguishing the conserved and diversified features of cell fates in the 4d lineage among modern
spiralians is required to understand how lophotrochozoan diversity has evolved by changes in developmental
processes. Here we analyze cell fates for the early progeny of the bilateral daughters (M teloblasts) of
micromere 4d in the leech Helobdella sp. Austin, a clitellate annelid. We show that the first six progeny of the
M teloblasts (em1–em6) contribute five different sets of progeny to non-segmental mesoderm, mainly in the
head and in the lining of the digestive tract. The latter feature, associated with cells em1 and em2 in
Helobdella, is seen with the M teloblast lineage in a second clitellate species, the sludgeworm Tubifex tubifex
and, on the basis of previously published work, in the initial progeny of theM teloblast homologs inmolluscan
species, suggesting that it may be an ancestral feature of lophotrochozoan development.
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Introduction

A central question in developmental biology is that of how changes
in developmental processes underlie the diversification of body plans
evident in extant animals. For addressing this question, spiralian taxa
(Mollusca, Annelida, Platyhelminthes, Nemertea, and Entoprocta and
others) provide species with homologous cells in their early embryos
that lead to a remarkably diverse set of adult body plans. They share
a characteristic pattern of early embryonic cell divisions (spiral
cleavage) that is now regarded as an ancestral character of the super-
phylum Lophotrochozoa (Dunn et al., 2008; Hejnol et al., 2009). In
spiral cleavage, the second embryonic axis is established by specifying
one quadrant of the embryo as the unique “D quadrant” (by cell
interactions in equal cleavers or by the segregation of determinants in
unequal cleavers (Freeman and Lundelius, 1992). Micromere 4d,
arising within the D quadrant at sixth cleavage, typically divides
equally to form left and right precursors of bilaterally symmetric
mesoderm (but see Meyer et al., 2010), and thus provides an example
of inter-phyletic homology at the single cell level that has no known
parallel in the other metazoan super-phyla.
In the leech Helobdella, a clitellate annelid, micromere 4d is
designated proteloblast DM″; its bilateral division gives rise to two
large stem cells (M teloblasts), whose iterated divisions yield
precursors (m blast cells) of the segmental mesoderm (Fernández
and Stent, 1980; Zackson, 1982; Weisblat and Shankland, 1985;
Bissen andWeisblat, 1989). Beyond this segmental contribution, early
progeny of the M teloblasts also contribute to the unsegmented
prostomium at the anterior (Anderson, 1973; Zackson, 1982; Gleizer
and Stent, 1993). This contribution is of particular interest for
comparative studies because it arises relatively early on in the 4d
lineage and thus might be expected to show greater conservation
across species. The prostomial contribution of the M lineage was
poorly defined in these early studies, however, due in part to technical
limitations.

Knowledge of the early mesodermal lineages is also necessary for
understanding segmentation in leeches and allied taxa. In vertebrates
and insects, segments are formed by creating boundaries within fields
of initially equipotent cells. In clitellate annelids by contrast, segments
represent the extensive interdigitation of spatially stereotyped clones
arising from cells in five longitudinal arrays of m, n, o, p and q blast
cells; the blast cells arise from a teloblastic posterior growth zone (see
Weisblat and Shankland, 1985; Wedeen and Shankland, 1997 for
further details). Leech segments may be defined either in terms of the
septa arising from the mesodermal hemisomites or in terms of the
r-phylotypic cell for Lophotrochozoa, in the leech
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ganglionic repeats within the ventral nerve cord, which straddle the
septa; hence the boundaries of neural and mesodermal segments are
out of phase with one another; the first purely segmental mesodermal
hemisomite is the one that straddles the first two segmental ganglia
(R1 and R2). Here, we employ the neural definition of segment
boundaries in keeping with most current workers and because the
ganglia are more reliably observed throughout development.

The interdigitation of serially homologous clones means that
segments at the anterior end of the animal do not receive the
complement of cells that would normally be contributed by yet more
anterior blast cell clones. This interdigitation is most pronounced for
the m blast cell clones, whose definitive progeny span 3 segments in
the mid-body of the animal (Weisblat and Shankland, 1985). Does the
embryo compensate for the lack of the normal mesodermal
complement in the anteriormost segments, and if so, how?

Here, using high-resolution cell lineage tracing techniques, we
have studied the early progeny of the M teloblasts in greater detail.
We show that, prior to initiating the production of purely segmental
m blast cells (sm cells), each M teloblast produces six early
mesodermal cells (em cells), which contribute wholly or in part to
non-segmental mesoderm. As previously described, all sm cells
undergo identical stereotyped early divisions and give rise to
homologous sets of pattern elements whose position along the
anterior/posterior axis is determined by the birth order of their blast
cell of origin (Fig. 1; Weisblat and Shankland, 1985; Gleizer and Stent,
1993). In contrast, the six em cells fall into five groups that differ from
each other and from standard sm cells in their early division patterns
(with the exception of em6 whose early divisions are indistinguish-
able from sm cells); each em cell type contributes a distinct
component to the later embryo. In addition, we show that em5 and
Fig. 1. Mesoderm development in the leech Helobdella. A. Representations of selected deve
B. Left: schematic showing the relationships of teloblasts, blast cells, bandlets, and germinal
panel (A). Right: schematic showing an M teloblast and its descendant column of em and sm
because the timing and orientation of their first mitoses are unknown; em4 (black outline) h
each undergone bilateral divisions; sm2 (green) is shown rounding up for mitosis while sm
clones across segments R1–R4 (color coded as in B; cells em1–em4 do not contribute to seg
midline; colored lines next to the midline indicate muscle cells within the nerve cord; color
ganglia, depict hemi-somite boundaries. Right: schematic modified from (Weisblat and Huan
typical midbody segment; c.m., connective muscle, m.n., M-derived neurons, d.v.m. dorsove
are born from each M teloblast prior to stage 6b. Durations (in minutes) of relevant develop
(Supplemental Movie 1). Cell cycles and stage lengths were calculated and averaged from a t
noted.
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em6 give rise to hybrid clones, contributing cell types to the first two
segments that in midbody segments would be provided by the
interdigitation of more anterior m clones.

A parallel re-examination of the 4d lineage in the oligochaete
Tubifex reveals that in this annelid, too, cell 4d contributes to anterior
non-segmental tissue. These two worms have different foregut
morphologies and thus distinct anterior contributions from 4d.
These differences further illustrate the principle that changes in the
developmental program of the 4d lineage are associated with the
diversity of spiralian body plans.

Materials and methods

Embryos

Embryos ofHelobdella sp. (Austin;Hau) collected fromAustin, Texas,
were obtained from a laboratory breeding colony. Embryos were cul-
tured inHL saline andmaintained at 23 °C aspreviously described (Song
et al., 2002). Staging and cell nomenclature are as defined previously for
H. robusta (Weisblat and Huang, 2001) however there are species
specific differences in the cell cycle rates between H. robusta and the
species used in this study H. sp. (Zhang and Weisblat, 2005; Gonsalves
and Weisblat, 2007). Embryos of Tubifex tubifex were collected as
previously described in (Shimizu, 1982).

Plasmid injection, mRNA synthesis, and mRNA injection

pEF-H2B:GFP plasmid (Gline et al., 2009) was injected at a con-
centration of 96 ng/μl with 3 mg/ml fixable tetramethylrhodamine
dextran (RDA; Molecular Probes, Eugene, OR). h2bGFP mRNA was
lopmental stages (animal pole views unless otherwise indicated; see text for details).
band on the right side of an early stage 8 embryo, corresponding to the boxed section in
cells, roughly 34 h after the division of DM″; em1–3 are depicted with dashed outlines

as not yet divided at this time, nor has em5 (blue), but em6 (red) and sm1 (yellow) have
3 (purple) and sm4 (turquoise) have not yet divided. C. Left: distribution of em and sm
mental mesoderm). Shown are ganglia R1–R4 (black contours): dashed line marks the
ed circles indicate clusters of M-derived neurons; open boxes, partially obscured by the
g, 2001) depicting themesodermal progeny (elements of 3 sm clones) associated with a
ntral muscle, neph. nephridium, hatched lines represent body wall muscles. D. Six cells
mental stages and M teloblast cell cycles, compiled from time-lapse movies of embryos
otal of 13 experiments. Anterior is up in this and all subsequent figures unless otherwise
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transcribed in vitro as previously described (Gline et al., 2009). The
concentration of mRNAs in the needle was 0.5 mg/ml with 3 mg/ml
RDA. Fixable Alexa fluor 647 dextran (ADA) was injected at a
concentration of 1 mg/ml and fixable fluorescein-conjugated dextran
(FDA) at 5 mg/ml.
Microscopy

For time-lapse fluorescence and darkfield microscopy, injected
embryos were mounted in HL saline, then examined and photo-
graphed using a Nikon E800 epifluorescence microscope equipped
with a CCD camera (Princeton Instruments, Trenton, NJ), controlled
by MetaMorph software (Molecular Devices, Sunnyvale, CA). Fluo-
rescent and/or darkfield images were acquired every 2–5 min. For
confocal microscopy, embryos were fixed for 1 h at RT or o/n at 4 °C in
0.75×PBS in 4% paraformaldehyde. Images were acquired on a Leica
SMRE microscope equipped with a TCS SL scanning head. Stacks of
confocal images were processed using Image J (Jackson et al., 2001)
for color merging and Z-projections.
In situ hybridization and immunostaining

GFP immunostaining was performed as in (Gline et al., 2009).
Immunostaining against histone H1 was done as for GFP with the
following changes; mouse monoclonal antibody against histone H1
(Chemicon, MAB052) was used at 1:1000 and alexa fluor 488
conjugated goat anti-mouse secondary was used at 1:500.

Helobdella tropomyosin (tropo1 and tropo2), and hedgehog (hh)
genes were identified from the H. robusta whole genome assembly
(http://genome.jgi-psf.org/Helro1/Helro1.home.html). PCR primers
were designed based on the sequence information obtained from
the genome assembly (tropo1 forward:

ATTAAGAAGAAGGTGCACACGATGAAGACT; tropo1 reverse:
CAGCTCGGTGAATGTGAAATCGAGTTCGTT; tropo2 forward:
ACAGGAGGAAGTGCCTTATCAACATTAAAA; tropo2 reverse:
GGCAATTTCATTGAACGCATTCTCCAATTC; hh forward:
ATGGAGAGTGTAGCAGATGAC; hh reverse: GGAGCAATGAATAT-

GACTCCT). Partial cDNA fragments of tropo1, tropo2, and hh were
amplified fromH. sp. Austin cDNA, gel extractedandcloned intopGEM-T
Easy (Promega). These sequences were designated as Hau-tropo1
(HQ161082), Hau-tropo1 (HQ161083), and Hau-hh (AAM70491).
Riboprobes labeled with digoxygenin were made using the MEGAscript
(Ambion) kit, according to the manufacturer's instructions.

For fluorescent in situ hybridization (FISH) stage 10 embryos were
collected and relaxed for 10 min in a relaxant solution (10 mMMgCl2,
5 mM NaCl, 1 mM KCl in 8% ethanol in water), then fixed in 4%
paraformaldehyde (PFA) for 1 h. Embryos were processed for in situ
hybridization as described (Choet al., 2010)with the followingchanges.
Probe concentrations ranged from1.0 to 2.0 ng/μl and hybridizationwas
carried out overnight at 67 °C in a 1:1 mixture of deionized formamide
and5×SSC, 0.2 mg/ml tRNA, 0.1 mg/mlheparin, 1×Denhardt's solution,
0.1% Tween 20 and 0.1% CHAPS. Probe lengths were as follows:
Hau-tropo1 (813 bp), Hau-tropo2 (735 bp), and Hhr-hh (1113 bp).

Subsequently, the NEN Tyramide Signal Amplification (TSA™) Plus
kit (Perkin Elmer, Wellesley, MA, USA) was used as described (Cho
et al., 2010). FISH-processed embryos were co-stained with DAPI
(4′,6-Diamidino-2-phenylindole, sigma) to visualize cell nuclei.
Embedding and sectioning

Selected embryos were dehydrated (through a graded ethanol
series into propylene oxide), then infiltrated with epoxide embedding
medium according to the manufacturer's instructions (Poly/Bed 812;
Polysciences). Thick sections were cut by hand using a razor blade.
Please cite this article as: Gline, S.E., et al., Lineage analysis of microm
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Results

Six early m (em) blast cells contribute non-segmental progeny

Helobdella embryos exemplify a version of unequal spiral cleavage
that is highly conserved among leeches and oligochaetes (clitellate
annelids; (Sandig and Dohle, 1988; Dohle, 1999; Bissen and Weisblat,
1989; Shimizu, 1982; Storey, 1989) and to a lesser extent among more
distantly related annelids (Dohle, 1999). Three rounds of division in the
A, B and C quadrants produce typically small micromeres. The D
quadrant, which is specified by the inheritance of RNA rich, yolk
deficient cytoplasm during the first two unequal cleavages (Fernández
et al., 1990; Astrow et al., 1987; Ren and Weisblat, 2006; Lyons and
Weisblat, 2009), undergoes four rounds of spiral cleavage. But the
second and fourth micromeres (micromeres 2d and 4d in classical
terminology) are disproportionately large in clitellate embryos
(Figs. 1; 2A). In Helobdella, micromeres 2d and 4d are designated
DNOPQ and DM″, respectively (Fig. 1A). DNOPQ produces four
bilaeral pairs of ectodermal segmentation stem cells (left–right pairs
of N, O/P, O/P andQ teloblasts), plus other small cells (Figs. 1A, B). DM
″ divides bilaterally, similar to the 4d cells in many other spiralians
(Figs. 1; 2A, B); its progeny are mesodermal segmentation stem cells
(ML and MR teloblasts), which are the focus of this work.

Each teloblast undergoes iterated, highly unequal stemcell divisions,
producing a coherent, age-ranked column (bandlet) of blast cells
(Fig. 1B; Figs. 2C–E). For the most part, blast cells undergo lineage-
specific stereotyped patterns of asymmetric cell divisions and contrib-
ute serially homologous pattern elements to segmental tissues, with the
clones of early arising blast cells contributing to anterior segments and
later born clones to more posterior segments (Figs. 1B, C).

Previous work indicated that some early progeny of the M
teloblasts make anterior non-segmental contributions (Zackson,
1982; Gleizer and Stent, 1993; Gline et al., 2009); consistent with
this, we observed morphological features of anterior mesoderm not
seen in segments (Figs. 2F–H). To further define and characterize the
early progeny of the M teloblasts, we used the purely segmental
ectodermal OP lineage (Kuo and Shankland, 2004) as a landmark to
define the anterior limits of segmentation and thereby assayed the
extent to which the M lineage extends anterior to the segmental
ectoderm. Thus, we injected ipsilateral M teloblast and OP teloblast
with different fluorescent lineage tracers immediately after their
births (15.5 h and 34 h AZD, respectively), and then fixed the
resultant embryos at various times to examine the distribution of
fluorescently labeled cells. For consistency, the ML teloblast was
targeted in all unilateral injections reported here.

Thirty hours after injection of the M teloblast, the M- and
OP-derived bandlets were not yet in contact (Fig. 3A). By 48 h post-
injection, the distal portion of the OP lineage overlay the M lineage,
but their anterior boundaries did not align; the anterior edge of the
OP lineage lay posterior to the anterior M lineage (Fig. 3B). By 72 h
post-injection, the anterior M lineage was morphologically distinct
from the more posterior portion that lay beneath the segmental OP
lineage (Fig. 3C). By 164 h post-injection (stage 10), the anteropos-
terior progression of segment differentiation is evident and the mis-
match between the anterior limits of the M and OP lineages remains
(Fig. 3D), indicating that the M lineage anterior to the OP boundary
is non-segmental. Embryos in which DM″ was co-injected with RDA
and a plasmid encoding a histone:GFP fusion protein (pEF-H2B:GFP)
to mark the nuclei of individual cells in the labeled lineage revealed
that hundreds of DM″ derived cells were present in the developing
head by stage 9 (5 days post-injection; Fig. S1).

Because the M teloblasts are born ~6.5 h before the N teloblasts and
~12.5 h before the OP proteloblasts and Q teloblasts, it was previously
assumed that segmental blast cell production began earlier in the
mesodermal lineage than in the ectodermal lineages. Given the finding
that the early mesodermal (em) lineage contributes so substantially to
ere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech
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Fig. 2.M lineage during cleavage and segmentation. (A–E). Confocal images (maximumprojections of stacks) of embryos inwhich DM″was injectedwith RDA (red) at stage 4b; injected
embryoswerefixed after the time intervals indicated (hours post-injection), then counterstained by immunofluorescence for histoneH1 to label nuclei (green). For orientation, cell and/or
embryos contours are indicated by dotted lines. A. Bilateral division of DM″ gives rise to teloblastsML andMR. B. During interphase, nuclei ofML andMR remain close to the zone of contact
between the two cells. C. As shown previously (Fernández and Stent, 1980), the first progeny of ML and MR (em1 cells) arise in direct apposition at the site of contact, so the distal
(prospective anterior) ends of the m bandlets are connected at this time (arrowhead in C–E). D. The anterior contact between left and right m bandlets (arrowhead) is maintained as
subsequentemcells areborn. E. By30 hpost-injection, the columnsofprimaryblast cells fromeach teloblasthave lengthenedandanterior cells havebegun todivide(openarrowheads;ML

isnot present in this stack of images). (F–H). Confocal imagesof older embryos inwhichDM″was injectedwithRDApluspEF-H2B:GFP orh2bgfpmRNA to specifically labelM lineagenuclei
(green). F. By 72 h post-injection, proliferation within sm blast cell clones has given rise to repeated clusters of cells (hemisomites; brackets). Anterior/distal to the hemisomites, the
distribution of labeled cells ismarkedlydifferent, including a populationof dispersed “freckle cells” (e.g., arrow)between the left and right germinal bands and a large cellwith a prominent
nucleus at the anterior end of each germinal band (arrowheads). G. By 96 h post-injection, segmentation in the anterior M lineage is more obvious (brackets), freckle cells are scattered
across the prospective dorsal side of the embryo (e.g., arrow) and there is still a large prominent cell at the anterior of each germinal band (arrowheads). H. Enlarged view of a sibling
embryo, corresponding to the boxed area of (G) showing the large anterior cell (arrowhead) and freckle cells, one ofwhichwas dividing (arrow). Scale bar, 130 μm inA–E; 100 μm in F–G;
60 μm in H.
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anterior non-segmental tissues, we used further pairwise injections of
M, N and OP teloblasts to re-examine the relative timing at which the
production of segmental founder cells begins in all teloblast lineages.
These experiments revealed that production of segmental founder cells
in both mesoderm and ectoderm begins within a narrow time window
corresponding to stage 6b (Figs. 3E, F; Fig. S2).

Time lapse videos were used to determine the number of “early
mesoderm” (em) cells born prior to stage 6b and to correlate the birth of
each em cell with the easily observed cleavages of ectodermal
proteloblasts, to facilitate further experiments. In these videos, the
rhythmic shape changes associated with cytokinesis of the teloblasts
showed that the M teloblasts undergo 6 cytokineses prior to the
beginning of stage 6b, when the first definitive sm cell is born (Fig. 1D;
Movie S1). No significant difference was found in M teloblast cell cycle
durations during em production or between em and sm production;
average cell cycle durations were calculated for the first ten divisions of
the M teloblast after the birth of em1, with an overall average cell cycle
of 120 min (Fig. 1D). The minimum average was 116.6 (±22.9) min
(for em5) andmaximum 127.6 (±20.8) min (for em4). The duration of
the M teloblast cell cycle leading to the birth of em1 could not be
determined directly from time-lapse recordingdue to technical reasons.

Characterization of the em cell lineages

To test the conclusion that the M teloblasts generate six early
mesoderm (em) cells prior to the first segmental mesoderm (sm)
blast cells, and to visualize the clonal descendants of these putative
em cells, progeny of individual em or sm cells were uniquely labeled
using timed tandem injections. For this purpose, M teloblasts of
carefully staged embryos were first injected with RDA and either pEF-
Please cite this article as: Gline, S.E., et al., Lineage analysis of micro
Helobdella and the sludgeworm Tubifex, Dev. Biol. (2011), doi:10.1016/
H2B:GFP plasmid or h2b:gfp mRNA, to mark cytoplasm and nuclei,
respectively. Two hours later, after one RDA-labeled blast cell was
produced, the teloblast was re-injected, with AlexaFluor 647 dextran
(ADA) tracer, so that the cytoplasm of all ensuing blast cells would be
double-labeled. Data from the time-lapse experiments described
earlier were used to determine the timing of the tandem injections.
Shifting these tandem injections later into development permitted us
to label individual em (and sm) cells uniquely, and fixing the resultant
embryos at different stages allowed us to view the uniquely labeled
clones at a variety of clonal ages (Fig. 4). These experiments confirmed
that six em cells (henceforth designated em1 through em6) are born
prior to the first sm cell, and also revealed that these six em cells
contribute five distinct sets of cells to the late embryo. The fates of
these cells are summarized later, preceded by a description of a typical
sm clone for comparative purposes:

sm
Contributions of segmental m blast cells (sm cells) to the later

stage embryo have been characterized previously (Kramer and
Weisblat, 1985; Weisblat and Shankland, 1985; Bissen and Weisblat,
1989; Gleizer and Stent, 1993). The first division of an sm blast cell
occurs at clonal age 13–15 h in H. sp. (Austin) and is roughly equal,
yielding sister cells lying side by side within the m bandlet (Fig. 1B;
Fig. S3; our unpublished observations). By 48 and 72 h clonal age,
these clones averaged 10.1+/−2.96 and 41.5+/−6.7 cells, respectively
(Figs. 4G–G″; 5). At stage 9, the typical midbody sm cell clone includes
muscle and mesenchymal cells lining the coelom and associated with
the ventral nerve cord, nephridia, and a small cluster of neurons in each
ganglion Figs. 1C, D; 6 Q–S; (Weisblat and Huang, 2001); each clone is
distributed across parts of three adjacent segments, so that the M
mere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech
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Fig. 3.Mesodermal and ectodermal lineagesbegin segmental blast cell production at approximately the same time. (A–E) Confocal images (maximally projected (maximumprojections of
stacks) of embryos injectedwithRDA(red) intonewbornML teloblasts (stage 4c) andwith FDA (green) intonewbornOPLproteloblasts (stage 6b); embryoswerefixed at the time intervals
indicated (hours after the M injection). A. At 30 h post-injection, the columns of cells (arrows) arising from theM and OP lineages are not yet in contact. B. By 48 h post-injection the two
columns of cells are roughly parallel, but the M teloblast derivatives extend well beyond the anterior extent of the OP lineage (dashed line in B–D). C. Themismatch between the anterior
borders of the M and OP lineages persists as the freckle cells spread between the germinal bands. D. By stage 9, a lateral view (ventral to left) reveals many RDA-labeled cells in the
prostomiumanterior to theOP lineage. E. Confocal image of the germinal plate dissected fromanembryofixed96 h post-injection showsextensivemesodermal progeny anterior to theOP
lineage. F. A dissectedgerminal plate comparable to that shown in (E), but fromanembryo inwhich theM teloblast andOPproteloblastwere injectedwithinminutes of one another, at the
birthofOP(stage6b).With this injectionparadigm, theanteriorMandOPboundaries fallwithin the same segment as shownhere, or inadjacent segments (not shown). In thispreparation,
some RDA-labeled contractile fibers from the provisional integument (arrowhead) appear above the segmental derivatives, due to folding of the preparation duringmounting. Scale bar,
60 μm in A–C; 80 μm in D–F.
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teloblast-derived progeny in any given midbody segment include
subsets of three interdigitated sm clones Figs. 1C; 6 Q–S; (Weisblat
and Huang, 2001). In addition to these segmental progeny, each sm
Fig. 4. Lineage-specific distribution patterns of early em clones. Confocal images (maximum p
were performed to uniquely label the progeny of cells em1-6 or sm1 with RDA (red) and eith
also contain ADA (blue). Embryos were cultured for 48 (top row) or 72 (middle and bottom
column shows close-up views of the uniquely labeled clones in the middle panel. The found
the similarity between the blue, em2-derived (arrowhead in A″) and red, em1-derived freckl
In F′ and G′, note lateral expansion of hemisomites (brackets). See text for details. Scale ba

Please cite this article as: Gline, S.E., et al., Lineage analysis of microm
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clone generates circumferential muscle fibers to the provisional
integument; these cells often lie several segments posterior to iso-
clonal cells within the germinal plate (Fig. 6Q). As will be seen later, the
rojections of stacks) of embryos in which timed tandem injections (see text for details)
er h2bgfpmRNA or pEF-H2B:GFP (yellow green). Cells arising after the second injection
rows) h post-injection, then fixed and processed for microscopy. Bottom panel in each
er cell for each uniquely labeled clone is indicated above the column. In A′ and A″, note
e cells. In E″, note cell debris (open arrowhead) suggestive of cell death in the em5 clone.
r, 60 μm in A–G; 100 μm in A′–G′; 25 μm in A″–G ″.

ere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech
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Fig. 5. Lineage-specific differences in proliferation within em clones. Cells in uniquely
labeled clones from timed tandem injections as shown in Fig. 4 were counted. Standard
deviations are indicated by error bars. Maximum clone sizes are indicated in red.
Sample sizes are indicated below the bars.

Fig. 6. Lineage-specific distribution patterns of em clones at early stage 9. Confocal images (m
tandem injections were used to uniquely label em (or sm) clones as in Fig. 4, except that in th
was used, and injected embryos were cultured to early stage 9, by which time the morpho
shows the complete stack of optical sections (arrows indicate the proboscis tip); images
progeny to the nascent proboscis in themedial portion of the prostomium (arrow in B); more
in a plane beneath the circumferential muscle fibers of the provisional integument (visible in
labeled em2 clone is not included in this figure. D, E. em3 contributes a brightly labeled pat
presumptive muscle fibers within the proboscis (closed arrowhead in E). F–I. em4 contri
developing proboscis (arrow in H), and cells scattered among the circumferential muscle fi

the presumptive proboscis sheath (bracket in K), muscle fibers to the presumptive proboscis
cells among the circumferential muscle fibers of the provisional integument (arrow in M). N
patch of cells in segment R3 (open arrowhead in O and P), mesoderm surrounding the first c
in P). Q–S. An anterior sm clone contributes circumferential muscle fibers to the provisional
a cluster of neurons in the next posterior ganglion (closed arrowhead in R and S) and the m
Q; 50 μm in all other panels.
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fates of cells em1–em4 differ dramatically from the sm cells, while em5
and em6 make a mix of segmental and non-segmental contributions.
em1 and em2
The progeny of em1 and em2 behave similarly throughout develop-

ment; both undergo early rounds of seemingly equal cell divisions to
generate scattered clones of morphologically indistinguishable “freckle
cells” beneath a micromere-derived epithelium between the germinal
bands in the early stage 8 embryo as previously described for H. triserialis
and H. robusta (Figs. 4 A–A″, B–B″; Zackson, 1982; Chi, 1996). Most em1
clones comprised fewer cells thanmost em2 clones at both two and three
days clonal age (1.7+/−0.5 vs. 4.3+/−1.1 cells at 2 days and 8.7+/−2.3
vs. 13.8+/−2.1 cells at 3 days, for em1 and em2 clones, respectively;
Fig. 5). Microinjection may cause minor developmental delays in the
injected lineages and the new bornM teloblasts are particularly sensitive
to this effect, which would selectively depress the cell counts for em1
clones; thus, the apparent differences in proliferation between em1 and
em2 may be an experimental artifact, and the maximum observed clone
size may reflect normal development more accurately than the average
clone size in these experiments. Accordingly, there were several embryos
aximum projections of stacks, lateral views, ventral to left) of embryos in which timed
ese experiments, FDA (yellow green) was used for the second injection, no nuclear label
logical differentiation of anterior tissues was underway. The top image in each column
below include sections highlighting the uniquely labeled clone. A–C. em1 contributes
posteriorly, em1 progeny (open arrowhead in C) lie superficial to the syncytial yolk cell,
A but not C); em2makes similar contributions (closed arrowhead in C) and the uniquely
ch (arrow in E, suggesting that there have been few divisions in this sub-lineage), and
butes scattered cells in the prostomium (open arrowhead in G), musculature in the
bers of the provisional integument (arrow in I). J–M. em5 contributes muscle fibers to
(arrow in L), a cluster of neurons in ganglion R1 (closed arrowhead in L) and superficial
–P. em6 contributes longitudinal muscle fibers to the proboscis (arrow in O), a lateral

oelomic cavity (asterisk in P) and a cluster of neurons in ganglion R2 (closed arrowhead
integument (closed arrowhead in Q), a nephridial primoridum (open arrowhead in R),
esoderm surrounding the coelom (asterisk in S). Scale bar, 180 μm in A, D, F, J, N, and
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Fig. 7. Definitive contributions of em lineages. Confocal images (maximal projections of stacks, lateral views) of embryos with uniquely labeled em clones as in Fig. 6, except that:
1) in some embryos the injections were timed so both em1 and em2 were labeled with RDA only and; 2) the injected embryos were cultured to late stage 9, by which time
differentiation in anterior tissues is well advanced, although the proboscis is still in its everted configuration. A–B. em1 and em2 progeny line the lumen of the proboscis (arrow in A)
and contribute to a layer of cells between the syncytial yolk cell and the germinal plate (arrow in B). C–D. Lateral andmedial optical sections, respectively, show that em3 contributes
radial muscle fibers to lateral (arrowhead in C) and dorsal (arrowhead in D) sectors of the proboscis. E. em3 also gives rise to a brightly labeled clump of seemingly detached cells
observed at various positions within the germinal plate lateral to segmental mesoderm (arrow). F–G. Lateral and medial optical sections, respectively show that em4 contributes
radialmusclefibers to lateral (arrowhead in F) and dorsolateral (arrowhead inG) sectors of the proboscis, just beneath themusculature of the sheath (open arrowhead F). H–I. Lateral and
medial optical sections, respectively, show that em5 gives rise to the majority of the musculature in the proboscis sheath (open arrowhead in H) and to radial muscle fibers in the ventral
sector of theproboscis (arrowhead in I). Double-labeled longitudinal proboscismusclefibers (arrow in I) arederived fromem6(not illustratedasa uniquely labeled clone). Scale bar, 25 μm
in E; 50 μm in all other panels.
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with comparable cell counts for em1 and em2 clones at 3 days clonal age
(14 and 16 cells maximum, respectively; Fig. 5).

At early stage 9, progeny of em1 and em2 constitute a cluster of
cells where the lumen of the proboscis is forming and a disperse set of
flattened mesenchymal cells lining the yolk (Figs. 6A–C, and data not
shown). By late stage 9, almost all the progeny of em1 and em2
comprise a continuous population of cells lining the lumen of the
proboscis and extending between the germinal plate and the yolk
syncytium (Figs. 7A, B). By stage 11 when gut morphogenesis has
taken place, these cells have come to line the crop, intestine and
rectum, as well as the lumen of the proboscis (Figs. 8A–C). Some cells
from any labeled em1 or em2 clone were seen contralateral to the
injected side within the proboscis, and at the level of the midgut and
hindgut, the em1 and em2 clones were distributed uniformly across
the midline, reflecting an intermingling of em1 and em2 clones from
the left and right sides of the embryo (Figs. 8B, C). In summary, the
progeny of em1 and em2 line the gut throughout its anteroposterior
extent.

em3
Proliferation of the em3 clone is slower than any other em lineage.

This clone comprises exactly 2 cells at 48 h and only 4.3+/−0.5 cells by
72 h clonal age (Figs. 4C–C″; 5). In contrast to the em1 and em2 clones,
the first em3 divisions are markedly unequal; one cell is invariably
larger and sits at the dorsal anterior edge of theM lineage (Figs. 4C–C″).

In stage 9 embryos, em3 contributes to cells in the developing
proboscis (Figs. 6D, E), which by late stage 9 are recognizable as
presumptive radial muscle cells within the dorsal part the proboscis
(Figs. 7C, D). Cell em3 also contributes a patch of cells at the lateral
edge of the developing head (Figs. 6D–E). In all embryos the tracer in
Please cite this article as: Gline, S.E., et al., Lineage analysis of microm
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this patchwas brighter than the rest of the clone, suggesting that there
hadbeen fewer cell divisions and/or less cell growth in this sub-lineage
(so that the tracer had remained more concentrated). At later stages,
the brightly labeled patch appeared as a dense ball, the position of
which varied widely along the A–P axis (Fig. 7E and data not shown),
suggesting that it had detached and was floating within the coelom.

em4
At 48 h clonal age, the em4 clone comprises 4.6+/−1.4 adjacent

cells of roughly equal size along the A–P axis of the M lineage
(Figs. 4D–D″; 5). By 72 h clonal age this clone averages 15.7+/−1.2
cells (Fig. 5), still of roughly equal size, and has taken on a distinctive
bipartite morphology. At the anterior dorsal portion of the clone is an
arc of 3–4 cells; the rest of the clone forms a compact cluster at the
base of the arc (Fig. 4D′–D″). In stage 9 embryos, em4 contributes
scattered cells throughout the head including many lateral radial
muscles within the proboscis (Figs. 6F–H; 7F, G), and also a sparse
population of cells with extended processes, lying among the
circumferential muscle fibers of the provisional integument (Fig. 6I).
Based on their morphology, which differs from that of the sm-derived
circumferential muscle fibers, we speculate that these cells may be
neurons innervating provisional circumferential muscle fibers, which
initiate peristaltic contractions at this stage.

em5
The progeny of em5 at 48 h clonal age, with an average clonal size

of 7.4+/−1.4 cells, exhibit a range of nuclear sizes and comprise a
coherent cluster behind the em4 clone at the anterior of the m band-
let (Figs. 4E–E″; 5). By 72 h clonal age em5 comprises on average 22.7
+/−3.5 cells (Fig. 5), some of which are situated beneath the rest of
ere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech
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Fig. 8. em1 and em2 derivatives line the foregut and midgut. Confocal images (maximum projections of stacks) from embryos in which the combined em1 and em2 clones from one
M lineage were both labeled with RDA (red) by timed tandem injections. The injected embryos were cultured to stage 11, by which time the digestive tract was well-differentiated.
A. By stage 11, the proboscis (p; foregut; dotted contour) has assumed its position within the anterior body; em1 and em2 progeny line both sides of the lumen. B, C. The crop
(c; anterior midgut) and intestine (i; posterior midgut) have differentiated from the syncytial yolk cell; em1 and em2 contribute bilaterally to a population of cells lining both the
crop (arrows B and C), and the intestine (open arrowheads C). Note that M progeny born after em1 and em2 (double labeled cells, yellow, presumably from sm clones) contribute
visceral mesoderm (closed arrowhead) lying just outside the em1 and em2 progeny. Scale bar, 20 μm in A, B; 30 μm in C.
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the M lineage and are therefore not visible in maximal projection
confocal stacks (Figs. 4E′–E″). In many embryos at 72 h clonal age,
there was RDA-containing cell debris anterior to the labeled lineage
(Figs. 4E′–E″), suggesting that cell death had occurred in this clone.

In the early stage 9 embryo, most definitive progeny of em5 lie in
the non-segmental prostomium, including presumptive radial muscle
cells within the proboscis and cells at its tip which are the pre-
sumptive musculature of the proboscis sheath (Figs. 6J–L). Similar to
em4, em5 also gives rise to a sparse population of cells amongst
the provisional circumferential muscle fibers (Fig. 6M). In the late
stage 9 embryo, em5 contributes the majority of muscle fibers in the
proboscis sheath (Fig. 7H) and radial muscle fibers in the ventral
portion of the outer ring of the proboscis (Fig. 7I).

In contrast to clones derived from cells em1 through em4, which
contribute exclusively non-segmental progeny, em5 also gives rise to
a small cluster of presumptive neurons on the ipsilateral side of
segmental ganglion R1, ventral to the first forming coelomic cavity
(hemisomite; Fig. 6L). These cells are similar in position and number
to the clusters of M teloblast-derived neurons (mn) in each segmental
ganglion (Figs. 1; 6S; Kramer and Weisblat, 1985; Weisblat and
Shankland, 1985). Interpreting this cluster of em5-derived cells in the
ganglia of R1 as serially homologous to the sm-derived neurons of
more posterior ganglia, cell em5 generates a hybrid clone, making
minor segmental and major non-segmental contributions.
em6
The em6 clone exhibits many but not all features of the standard

sm clones. The cell cycle duration of em6 and the orientation of its
mitosis are indistinguishable from those of the sm cells, while the cell
cycles for em1–5 are significantly different (Fig. S3). At 48 and 72 h
clonal age, the em6 clones comprise an average of 10.3+/−2.6 and
37+/−2.9 cells, respectively, not significantly different from sm
clones at equivalent ages (t test; P=0.862 and 0.282 respectively;
Fig. 5). At these time points, the em6 clone is also morphologically
similar to the true hemisomite arising from the next M-derived cell,
sm1 (Figs. 4F–F″, G–G″).

Analysis of the uniquely labeled progeny of em6 in the stage 9
embryo revealed that em6 gives rise to a nearly complete segment's
worth of progeny spanning segments R1–R3 (Figs. 6N–P). Deeper
projections showuniquely labeled em6progeny surrounding thewalls
of the nascent coelomic cavity underlying the anterior portion of
gangionR1, aswell as contributingprospectivemuscles, a small cluster
of M-derived neurons in segment R2, and a lateral patch of mesoderm
in segment R3 (Figs. 6N–P).
Please cite this article as: Gline, S.E., et al., Lineage analysis of micro
Helobdella and the sludgeworm Tubifex, Dev. Biol. (2011), doi:10.1016/
However, in addition to a largely normal complement of segmental
progeny, the em6 clone gives rise to longitudinal muscles within the
proboscis, which are especially conspicuous by late stage 9 (Fig. 7H, I).
Anotherdifferencewith respect to the standard smcells is that em6does
not give rise to any provisional circumferential muscle fibers (compare
Figs. 6N andQ). Thus, both the em5and em6 clones are hybrid in nature,
generating mixtures of segmental and non-segmental progeny. Their
progeny contribute to the M kinship groups in segments R1 and R2.

em contributions to proboscis

The experiments described earlier revealed that em cells contrib-
ute extensively to the proboscis, a muscular, eversible feeding ap-
paratus (Sawyer, 1986). The development of this complex structure
provides an interesting example of organogenesis, in which both
Hedgehog and Wnt signaling pathways are implicated (Kang et al.,
2003; Cho et al., 2010).

At stages 9 and 10, which were used as the end point for much of
our work, the proboscis proper is organized into three concentric
rings of cells: the inner ring begins as a layer of columnar epithelial
cells surrounding the lumen; immediately outside the inner ring is a
thin middle ring comprised of presumptive circumferential muscle
fibers; the outer ring includes multiple layers of cells including pre-
sumptive radial and longitudinal muscle cells, nerves and secretory
ductules (Figs. 9, 10).

Previous work has shown that various non-teloblast lineages
contribute to the proboscis, accounting for the presumptive circum-
ferential muscle fibers of the middle ring, epithelial cells in the outer
ring and in the sheath, and longitudinal cells in the proboscis that
were proposed to be muscles and/or neurons (Fig. 10B; Huang et al.,
2002; Kang et al., 2003). This prior work left much of the proboscis
unaccounted for, including much of the outer ring and all of the inner
ring. Moreover, the correspondence between these early cells and the
differentiated cell types of the adult proboscis was not certain. Our
present work shows that the em lineages contribute most or all of the
previously unaccounted for cells and suggest corrections for previous
cell fate assignments.

To examine the contributions from the M lineage to the proboscis
and its sheath in detail, we injected either DM″ or a newborn M
teloblast with RDA. Embryos were cultured to stage 9 or 10, counter-
stained with DAPI and observed in thick sections using confocal
microscopy.

In DM″-injected embryos, the inner ring appeared as a continuous
band of RDA-containing cells, indicating that it derived entirely from
DM″ (Figs. 9A–I). Directly surrounding the inner ring were a small
mere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech
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Fig. 9. The M lineage contributes to all layers of the proboscis and its sheath. Confocal images (maximum projections of stacks from thick sections) showing transverse views (dorsal
up) of the proboscises of embryos in which cell DM″ (A–I, M–O) or ML (J–L) was injected with RDA (red); injected embryos were fixed at stage 9 (Oda-Ishii et al., 2005) or 10 (J–O),
counterstained with DAPI (cyan), embedded and sectioned by hand. A–C. At the distal tip of the proboscis, muscle fibers from the sheath (open arrowheads in A–F) connect to the
proboscis itself. At this stage, the inner ring comprising em1 and em2 derivatives (closed arrowheads in all panels), is a cylinder of columnar epithelium. D–F. A slightlymore posterior
section from the same specimen reveals the space (asterisk) between the proboscis (p) and its sheath (s). G–I. Further posterior, at the level of the supraesophageal ganglia (seg),
presumptive longitudinal muscle fibers appear as a ring of puncta (small arrows in G–O) surrounding the inner ring. J–L. By mid-stage 10, the proboscis has retracted to within the
body cavity and the tri-radiate organization of the lumen is evident. Radial muscles (large arrows in J–O) span from just within the longitudinal muscles at the outer edge of the
proboscis to the inner ring and their large ovoid nuclei are shifting toward the outer edge. If the longitudinally oriented cells surrounding the inner ring at stage 9 (small arrows inG–I)
are precursors of the peripheral longitudinal muscle fibers at stage 10 and beyond, theymustmigrate peripherally; candidates for suchmigrating cells are visible in this section (small
arrows). M–O. By late stage 10, nuclei of the longitudinal and radial muscles are arranged in concentric rings near the outer surface of the proboscis. Cells of the inner ring constitute a
thin layer lining the tri-radiate lumen. Scale bar, 25 μm.
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Fig. 10. Embryonic origins of cells in the proboscis. Drawings depict transverse sections with dorsal up. A. Schematic showing contributions of em clones to the late stage 9 proboscis
(left) and a hypothesis of how they relate to cells in the adult proboscis (right), based on the work presented here. In the adult proboscis (right), progeny of em1 and em 2 line the
lumen, those of em3–5 comprise radial muscle fibers and those of em6 comprise longitudinal muscle fibers. In these lefthand drawings, grey outlines depict cells not arising from the
M lineage, including presumptive nerves and salivary ductules running between the radial muscle fibers and a band of circumferential muscle fibers lying partway out along the
radius. B. A schematic based on previously published work in another Helobdella species (Huang et al., 2002; Kang et al., 2003) shows contributions from other embryonic lineages
accounting for the non-M-derived cells in the stage 9 proboscis.
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number of RDA-labeled circumferential muscle fibers (Figs. 9G–I). The
majority of the contributions from DM″ to the outer ring appear to be
radial muscle precursors (Figs. 9D–F, J–O). DM″-derived longitudinal
muscle fibers were apparent as a ring of puncta just outside the inner
ring (Figs. 9G–I). In addition to the proboscis proper, RDA-containing
fibers were seen throughout the sheath, including an array of M-
derived presumptive longitudinal muscle fibers radiating from the tip
of the proboscis into the sheath (Figs. 9A–C). These sheath muscles
extend posteriorly (Figs. 9D–F) to the oral opening, where a set of M-
derived circumoral muscle fibers run perpendicular to them (data not
shown).

By late stage 10, the proboscis has retracted and its lumen is tri-
radiate. Embryos with unilateral M injections contained labeled cells
on both sides of the midline in all three rings and in the sheath
(Figs. 9J–L), indicating that em-derived cells had routinely crossed the
midline, a phenomenon that is seldom seen in segmental ectoderm or
mesoderm. The extent of midline crossing varied within the different
layers of the proboscis and from embryo to embryo.

During stage 10 cellular organizationwithin the proboscis increased.
Nuclei of the radial muscle fibers formed a prominent ring near the
periphery (Figs. 9J–O). By late stage 10, the nuclei of the radial muscles
were surrounded by a ring of smaller nuclei corresponding to the
longitudinal muscle fibers, as in the adult (Figs. 9M–O). At earlier time
points, presumptive longitudinal muscle fiber nuclei were seen at
intermediate radial locations, which we interpret as an outward
migration from their initial position next to the middle ring. Contribu-
tions of the DM″ sub-lineages to the proboscis are summarized in Fig. 10.

Previous work (Kang et al., 2003) identified an inner ring of cells in
the developing proboscis as the main site of expression for a
Helobdella hedgehog gene homolog (Hau-hh). These cells would thus
be a candidate signaling center for organizing the development of the
concentric rings of cells comprising the proboscis. Our present results
suggest that the cells expressing Hau-hh at the core of the proboscis
are those arising from the em1 and em2 clones. This was confirmed by
examining the sections through the proboscis of embryos whose early
M teloblast was injected with FDA and which were then processed for
Hau-hh in situ hybridization at stage 9 (Figs. 11A–D). Hau-hhwas also
expressed in epidermal cells at the tip of the proboscis where it joins
the sheath and in a ring of fibers surrounding the proboscis that
resembles the putative longitudinal muscle fibers. It had been
suggested (Kang et al., 2003) that the inner ring cells differentiate
into the radial muscles; but our present results make this unlikely:
first, lineage tracer revealed that the inner ring cells did not extend
processes to the outer surface of the proboscis (Figs. 9J–O), but instead
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lost their columnar shapes and became progressively more flattened
in later stages of development, as if differentiating into an epithelial
lining of the proboscis (Figs. 9M–O). Moreover, lineage tracing also
revealed that cells arising from em3, em4 and em5 near the outer
surface of the proboscis did extend centrally (Figs. 9J–O), consistent
with being radial muscle precursors.

Further evidence regarding the nature of the em1 and em2 deriv-
atives came from using the expression of tropomyosin family genes as
cell differentiation markers. Tropomyosins are actin binding proteins,
paralogs of which are expressed differentially in muscle and non-
muscle cells (Pittenger et al., 1994; Perry, 2001). The Helobdella
genome contains multiple tropomyosin homologs. In situ hybridiza-
tion revealed that the paralog designated Hau-trop1was expressed in
segmental muscle cells as they differentiated in anteroposterior
progression within the M lineage (Fig. 11E), by M-derived circum-
ferential muscle cells of the provisional integument (Fig. 11E), by the
M-derived muscle cells associated with the proboscis sheath and by
cells in the outer ring of the proboscis (Figs. 11F–H), suggesting
that this gene is a candidate marker for differentiating muscle cells.
Hau-trop1 was also expressed at low levels by the radially oriented
cells arising from cells em3, em4 and em5 near the outer surface of
the proboscis, consistent with the hypothesis that they are indeed
differentiating into the radial muscles, but not by the inner ring cells
arising from em1 and em2. Instead, these cells expressed a different
tropomyosin paralog, Hau-trop2, which was not detected in any of the
knownmuscles listed earlier (Figs. 11I–K). These observations support
the conclusion that the radial muscles of the proboscis arise not from
the em1 and em2-derived cells of the inner ring, but rather from the
em3, em4 and em5 cells in the outer ring at stages 9–10 (Fig. 10).

4d lineage in the oligochaete annelid Tubifex

The sludgeworm Tubifex and the leechHelobdella differ dramatically
in morphology, including head structure. Nonetheless, as clitellate
annelids, their embryos undergo homologous early cleavages and the
homology between the fate maps of their teloblasts in later develop-
ment is also unmistakable (Shimizu, 1982; Goto et al., 1999a,b;
Nakamoto et al., 2000). Thus, they are useful systems for comparison
aimed at relating changes in 4d lineages to the evolution of
morphological differences.

Segmental boundaries in Tubifex are marked by bundles of chitinous
bristles (chaetae). T. tubifex has four bundles of chaetae per segment,
one dorsolateral pair and one ventrolateral pair (Fig. S4; (Bouche et al.,
1997). The first segmental chaetae appear immediately posterior to the
mere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech
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Fig. 11. Differential expression of hedgehog (Hau-hh) and tropomyosins (Hau-trop1, Hau-trop2) in the developing proboscis. Standard fluorescence (A) and confocal images
(maximum projections of stacks; B–K) of embryos in which early ML teloblasts (stage 4c) were injected with FDA (green); injected embryos were fixed at stage 9–10, processed for
fluorescent in situ hybridization (FISH, red), then examined in wholemount or as sections counterstained with DAPI (blue). A–D. FISH for Hau-hh. A. Lateral view; expression is
predominantly in core of the proboscis (Kang et al., 2003). B. Saggital section through the proboscis shows that Hau-hh expression is strongest in cells of the inner ring (arrows), cells
just outside the inner ring (open arrowheads) and cells in the epidermal layer at the tip of the proboscis sheath (closed arrowheads). C, D. Saggital and transverse views, respectively
showing colocalization of lineage tracer and FISH product (yellow) confirm thatHau-hh positive cells are those of the inner ring, derived from em1 and em2. E–H. FISH forHau-tropo1.
E. In stage 9 embryos, Hau-tropo1 is expressed in the M-derived provisional circumferential muscle fibers of the integument (arrows) and in segmental muscle cells of anterior, more
differentiated segments (closed arrowheads), but not in the posterior segmental mesoderm (open arrowheads) where segmental muscles have not yet differentiated. F–H. Saggital
and transverse sections (as in B–D) show that Hau-trop1 is expressed in muscles of the proboscis sheath (closed arrowheads), and in cells just outside the inner ring (open
arrowheads), but not in the inner ring (arrows). I–K. In contrast to Hau-trop1, Hau-trop2 is expressed throughout the inner ring of em1 and em 2-derived cells (arrows). Scale bar,
125 μm in A, E; 40 μm in all other panels.
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peristome (Bouche et al., 1997). There is no ganglion associated with
this “segment”, however; the anterior end of the first segmental
ganglion is in the next posterior segment (A.N., data not shown). Thus,
adapting a neurogenic definition of segmentation as in Helobdella, we
define the first true segment as the second chaetae-bearing segment,
defined elsewhere as segment III (Bouche et al., 1997).

To visualize themesodermal lineage in Tubifex, cell 4d was injected
with RDA and embryos were cultured for various intervals prior to
fixation. In Tubifex, injected cytoplasmic tracers such as RDA are
differentially concentrated at the sub-cellular level, thus providing
fortuitous nuclear markers (Goto et al., 1999b). As inHelobdella, the M
teloblasts in Tubifex undergo highly asymmetric divisions to give rise
to smaller blast cells, born towards the animal pole (Fig. 12A; Goto
et al., 1999a). Unlike Helobdella, the left and right M bandlets in
Tubifex do not contact one another at their anterior, distal tips
(Fig. 12A, B; Goto et al., 1999b).

After 72 h of development, the anterior portion of the bilaterally
symmetric 4d lineage ismorphologically distinct from themore posterior,
segmental portions (Fig. 12C; Kitamura and Shimizu, 2000). A distinct
anterior projectionwith fine branches is seen at a lateral anterior position
in theM lineage on each side of the embryo (Figs. 13C, C′); this projection
appears to come from a single large cell. By 96 h post-injection, this
projection has extended posteriorly along the dorsal aspect and still
appears to arise from a single large cell (Figs. 12D, D′); as the segmental
mesodermspreadsdorsally, the longprojection is contactedbyM-derived
circumferential fibers (Figs. 12D, D′) followed at 120 h post-injection by
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other cells of the segmental mesoderm (Figs. 12E, E′). At 144 h post-
injection, it is apparent that the 4d lineage labels cells up to and including
the mouth (Figs. 12F, F′) as well as an array of thin muscle fibers that
extend across the head, converging to a common anchor point on each
side (Figs. 12F, F′). Thus, as in Helobdella, there is clearly a significant
contribution to anterior, non-segmental mesoderm from 4d in Tubifex.

Discussion

em cells in Helobdella

Wehave characterized the fatesof the early progenyof thebilaterally
pairedmesoteloblasts (M teloblasts) which arise from proteloblast DM″

in the leech Helobdella. This information is of interest for studies of
evolutionary development because cell DM″ is the homolog of
micromere 4d, which gives rise to bilateral mesoderm in the embryos
of many other spiral cleaving taxa. Thus, comparing features of the 4d
lineage among extant spiralians should allow us to draw inferences
concerning the condition of the ancestral lophotrochozoan and to
elucidate the changes in development associated with the evolution of
its diverse descendants.

Our studies reveal that the first six m blast cells (em1–em6),
resulting from the stem cell-like divisions of the M teloblasts,
contribute to non-segmental tissues of the juvenile leech. em1 and
em2 clones contribute the lining of the digestive tract. Clones arising
from cells em3, em4 and em5 are similar in that each contributes
ere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech
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Fig. 12. Ontogeny of 4d lineage in Tubifex. Confocal images (maximum projections of stacks) of Tubifex embryos fixed 24–144 h after cell 4d was injected with RDA (red). A, B. Animal
views. All others are lateral views (ventral to left). A. 24 h post-injection, ML and MR are visible (arrows); the nascent columns of blast cells are not in contact at their distal ends
(arrowheads). B. 48 h post-injection, left and right germinal bands are visible, still without contact at their distal ends (arrowheads). C–E, C′–E′. During the period 72–120 h post-
injection, a single large 4d-derived cell is evident on each side (arrowheads C′–E′), reminiscent of the large, em3-derived cells in Helobdella. C′–E′. Higher power views of the boxed
regions in C–E, respectively, show that this large cell appears to form a long process with profuse, fine lateral branches extending posteriorly in dorsolateral territory (closed
arrowheads in C′–E′). This cell appears to mark the edge of the dorsally expanding germinal plate. F. By 144 h post-injection, primordial germ cells are visible as three bright clusters
of RDA-containing cells (arrows). F′. Magnified view of the anterior end shows that, as in Helobdella, the 4d lineage has contributed muscle cells (open arrowhead) anterior to the
mouth, and cells lining the mouth opening (arrow). Scale bar, 150 μm in A, B; 200 μm in C–E; 320 μm in F; 60 μm in C′–F′.
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presumptive radial muscles to the dorsal, lateral and ventral portions
of the proboscis, respectively, but there are also clear differences
among them: the em3 clone undergoes slow and unequal early
divisions that yield a prominent cell with a large nucleus not seen in
any other em lineage; em4 and em5 have roughly similar rates of early
proliferation, but the em5 clones contribute prominently to the
musculature of the proboscis sheath and also contribute a cluster of
cells to ganglion R1which appears to be homologous to the segmental
complement of M-derived neurons, neither of which is seen in the
em4 clone. Finally, em6 generates a hybrid clone that is similar to
those of the sm blast cells in most respects, except that it contributes
longitudinal muscle fibers to the outer ring of the proboscis, and does
not contribute circumferential muscle to the provisional integument.

Embryonic origins of endoderm

Our finding that cells em1 and em2 contribute to the lining of the
intestine raises questions concerning the relationship of this layer to
what was previously defined as endoderm (Nardelli-Haefliger and
Shankland, 1993; Liu et al., 1998). Our observations (Fig. 8C) suggest that
visceral mesoderm arises from sm blast cells (consistent with prior
results); thus, we presume that em1 and em2-derived cells underlying
the visceral mesoderm are endoderm. In contrast, Nardelli-Haefliger and
Shankland showed that intestinal endoderm arises from the syncytial
yolk cell derived in part frommacromeres A‴, B‴ and C‴, and apparently
not from the M lineage, but found little labeling of the endoderm layer
whenmacromereswere injectedwith a tracer. This discrepancy could be
explainedbyassuming that em1–2andmacromeresA–Call contribute to
the endodermal layer and that Nardelli-Haefliger and Shankland injected
M teloblasts after the birth of em1 and em2.

Embryonic origins of the proboscis

The proboscis is a complex structure comprising most of the
foregut in rhynchobdellid leeches. It has complex embryonic origins
as well; previous studies showed that micromeres from all of the first
three quartets contribute some cells to the proboscis and to the
epithelium of the proboscis sheath, but these contributions failed to
account for most cells of the proboscis or for the muscles of its sheath
(Fig. 10). Moreover, those previous studies suggested the inner ring of
hedgehog-expressing cells in the stage 9–10 embryo as precursors of
Please cite this article as: Gline, S.E., et al., Lineage analysis of micro
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the radial musculature (Kang et al., 2003). Our present work indicates
that those inner ring cells, which we propose to be organizers of
proboscis development, arise from em1 and em2 and constitute an
epithelial lining of the foregut. The radial muscles arise instead from
em3–em5.

Contributions of em cells to anterior segments

In contrast to vertebrate and insect embryos, which create
segments by establishing boundaries within pre-existing fields of
cells, the mesodermal and ectodermal components of segments in
leech embryos represent the interdigitation of spatially stereotyped
clones, which arise from parallel arrays of lineage-restricted meso-
dermal and ectodermal founder cells (Weisblat and Shankland, 1985).
The fact that most of the seven classes of blast cell clones interdigitate
across segment boundaries raises complications at the anterior and
posterior ends of the animal; either the terminal segments should be
missing cells that would normally be contributed by nonexistent blast
cells anterior or posterior to the finite blast cell array, and/or the
lineages of the blast cell clones populating the terminal segments
must deviate from those contributing to midbody segments. Here, we
have shown that the latter possibility applies in the case of the
mesodermal lineages contributing to the anterior segments, with the
em5 and em6 clones each being hybrid in nature. The em5 clone gives
rise to largely non-segmental progeny, but contributes the cluster
of mn neurons that would otherwise be missing from segmental
ganglion R1. The em6 clone gives rise to a largely normal complement
of segmental progeny, including the somite that overlaps the anterior
portion of ganglion R1, but also contributes longitudinal muscle fibers
to the proboscis.

Comparisons with other spiralians

A goal of the present work is to provide a basis for comparisons
with other spiralians aimed at distinguishing conserved and varying
features of the 4d lineage associated with body plan evolution in this
group. At present, the scope for comparison is limited because
detailed lineage information is only available for a few other species.

For glossiphoniid leeches, the M lineages in the congeneric species
H. triserialis and H. robusta contribute prostomial tissues and exhibit
“freckle” cells at early stage 8 which arise from the equivalent of cells
mere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech
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em1 and em2 in H. robusta (Zackson, 1982); (Chi, 1996). No freckle
cells were observed in an analysis of early M teloblast progeny in a
more distant glossiphoniid species, Theromyzon rude (Gleizer and
Stent, 1993) rather, the first twom blast cells in T. rudewere described
as contributing to the prostomium and to M-derived neurons in the
first two segments, comparable to cells em5 and em6 in our study of
Helobdella. Whether these cells contributed a lining to the proboscis
lumen and gut was not noted.We note that Gleizer and Stent analyzed
T. rude by direct injection of blast cells visible at the surface of the
embryo; thus, it is possible that one or more cells in the early M
lineage were not detected in their work.

Leeches and oligochaetes comprise a monophyletic group of
annelids, Clitellata (Erseus and Kallersjo, 2004; Zrzavy et al., 2009),
and their embryos share many details of early development, including
the production of segmental mesoderm and ectoderm from homol-
ogous sets of teloblasts (Weisblat and Shankland, 1985; Storey, 1989;
Goto et al., 1999a,b). Early patterns of cell divisions and clone mor-
phologies within the segmental M lineages across clitellate embryos
are highly similar; thus, the morphological differences among adults
of these species must arise later in development. Will the same hold
true for the early, non-segmental contributions of the 4d lineage?
Technical considerations prevented us from analyzing the early M
lineage in Tubifex embryos at the level of detail obtained forHelobdella.
Nevertheless, it is clear that cell 4d contributes to prostomial meso-
derm in both species, and several more specific comparisons can be
made between these distantly related clitellate annnelids. In Tubifex,
there are clearly no freckle cells, but 4d derivatives do line the opening
of the mouth. Intriguingly, Tubifex embryos examined 72 h after
injecting 4d with lineage tracer, exhibit a conspicuous cell with a
large flat nucleus at the anterior end of each germinal band that is
intriguingly similar in size and position to the cell observed in the em3
clone of Helobdella.

Considering more distantly related annelids, an exception to the
rule that segmental mesoderm arises from the daughters of 4d has
emerged for the polychaete annelid Capitella teleta (Meyer et al.,
2010). While the Capitella 4d lineage gives rise to the primordial germ
cells, and several trunk muscles as in other spiralians, the segmental
mesoderm arises instead from third quartet micromeres 3d and 3c. In
Helobdella robusta, the homologous micromeres contribute the
circumferential muscles of the proboscis and to a sparsely branching
network of cells extending throughout the length of the animal,
whose function remains unknown (Huang et al., 2002). For another
polychaete, Platynereis dumerilii, 4d is described as giving rise to
bilateral trunk mesoderm, more typical of the presumed canonical
spiralian (Ackermann et al., 2005).

In molluscs as in annelids, cell 4d typically divides bilaterally and
contributes progeny to muscle, heart, kidney, intestine and hindgut
tissues (Render, 1997; Hejnol et al., 2007). However, in contrast to the
uniformly polarized divisions of the M teloblasts seen in clitellate
annelids, the homologous mesentoblasts in molluscan embryos (as
exemplified by two gastropod species, Ilyanassa obsoleta and
Crepidula fornicata) exhibit reproducible alternations in the polariza-
tion of their early divisions: in Ilyanassa, the first and third cells are
born from the vegetal side of the mesentoblast; the second cell is born
from the animal side; and the fourth, fifth and sixth cells arise from
the animal side at a more medial position (Swartz et al., 2008;
Rabinowitz et al., 2008). Similarly, in Crepidula, the first and third cells
are born from the vegetal side, while the second and fourth cells
arise from the animal side (Henry et al., 2010). As a result, the early
mesentoblast progeny are not organized into coherent columns as
in the m bandlets of Helobdella and Tubifex (Swartz et al., 2008;
Rabinowitz et al., 2008).

In Crepidula, the first and third (vegetally born) cells from each
mesentoblast contribute to the intestine, similar to the digestive tract-
lining fate of cells em1 and em2 in Helobdella. But the second
mesentoblast-derived cell in Crepidula contributes to an “embryonic
Please cite this article as: Gline, S.E., et al., Lineage analysis of microm
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kidney” rather than to the gut (Henry et al., 2010). Analogous
provisional structures, termed protonephridia, are a general feature of
clitellate annelid embryos reviewed in Anderson (1973), including
some leeches reviewed in Sawyer (1986); but no such structures have
been identified in Helobdella, so we could not investigate their origins,
and whether or not the annelid protonephridium and the molluscan
embryonic kidney are homologous remains to be determined. As-
suming that the intestine-forming lineages are homologous in
annelids and molluscs, this difference could represent the intercala-
tion of a new cell in the Crepidula 4d lineage or the loss of a cell from
the Helobdella 4d lineage, relative to the ancestor.

Conclusions

In summary, the work presented here for Helobdella and Tubifex
establishes a basis for more detailed comparisons, across diverse
spiralian taxa, of the developmental cell fates of micromere 4d, whose
status as a precursor of mesodermal tissues is a hallmark of the
conserved early development of the super-phylum Lophotrochozoa.
We tentatively propose that the very first cell arising from the
bilateral daughters of 4d (em1 in our terminology) contributes to the
lining of the digestive tract as a general feature of annelids and
molluscs, and that further homologies, such as the prominent large
cells in the em3 clone can be identified at least within the Clitellata.
Elucidating the division patterns and fates in the 4d lineage across
spiralians will lead to a better understanding of how evolutionary
changes have led to body plan diversification despite the conserved
patterns of early development in this large group of animals.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ydbio.2011.01.031.
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