MCB102 / Metabolism Problem Set #1 Spring 2008

These are example problems, which are similar to those you may see on the final exam.

QUESTION 1: The sugar drawn below is split during glycolysis.

- (I) What is the name of the sugar?
- (II) Circle the phosphate group that was added to this sugar by the enzyme hexokinase.
- (III) Draw a line that bisects the hexose sugar into two pieces according to the enzymatic cleavage performed during glycolysis.
- (IV) What is the name of the enzyme that performs the cleavage?
- (V) Label each half of the cleaved hexose on the drawing with the name of the products.

QUESTION 2: True/False. Circl below each part.	le the correct a	answer. If ye	ou answer false, explain w	why in one sentence
(I) Lactate is oxidized by NA	DH to produce	pyruvate, w	hich feeds into gluconeoger	nesis.
	TRUE	or	FALSE	
(II) It is critical to regulate the	e reversible step	os of glycoly	sis to prevent "futile cycling.	"
	TRUE	or	FALSE	
(III) If a cell has excess AMP	then alvcolvsis	s is stopped	at the pyruvate kinase step	
	TRUE	or	FALSE	
(IV) Autotrophs obtain energy	r from sunlight o	or minerals a	nd carbon from organic con	npounds or CO_2 .
	TRUE	or	FALSE	
(V) The Δ <i>G</i> [׳] ^o of hydrolysis fo magnitude than that f	r the removal o or the gamma p	f a phosphoi bhosphate o	yl group on phosphoenolpy ATP.	ruvate is greater in
	TRUE	or	FALSE	
(VI) GTP is used in glycolysis	s at the step in	which oxaloa	acetate is converted to pyru	vate.

TRUE or FALSE

QUESTION 3: Multiple Choice. Circle the correct answer.

- (I) When a nucleophile attacks the α -phosphorous atom of ATP, what kind of transfer occurs?
 - (A) pyrophosphoryl transfer
 - (B) phosphoryl transfer
 - (C) adenylyl transfer
 - (D) adenosine transfer
- (II) A chemical reaction is more likely to occur spontaneously if
 - (A) the products of the reaction are more complex than the reactants.
 - (B) the system takes up heat from its surroundings.
 - (C) the products of the reaction are more disordered than the reactants.
 - (D) the system gains free energy.

(III) If a chemical reaction starts with 1 M concentrations each of reactants A and B and products C and D, under what conditions of K'_{eq} and $\Delta G'^{o}$ will the reaction proceed in the forward direction ($\Delta G'^{o} = -RT \ln K'_{eq}$)?

- (A) If K'_{eq} is greater than 1 and $\Delta G'^{o}$ is negative.
- (B) If K'_{eq} is 0 and $\Delta G'^{o}$ is negative.
- (C) If K'_{eq} is negative and $\Delta G'^{o}$ is negative.
- (D) If K'_{eq} is less than 1 and $\Delta G'^{o}$ is positive.
- (IV) In humans, gluconeogenesis
 - (A) can result in the conversion of protein into blood glucose.
 - (B) helps to reduce blood glucose after a carbohydrate-rich meal.
 - (C) is activated by the hormone insulin
 - (D) is essential in the conversion of fatty acids to glucose.
 - (E) requires the enzyme hexokinase.

(V) The steps of glycolysis between glyceraldehyde 3-phosphate and 3-phosphoglycerate involve all of the following *except:*

- (A) ATP synthesis.
- (B) catalysis by phosphoglycerate kinase.
- (C) oxidation of NADH to NAD^+ .
- (D) the formation of 1,3-bisphosphoglycerate.
- (E) utilization of P_i.

QUESTION 4: The hydrolysis reaction of ATP is written as:

ATP + H₂O ← → ADP + Pi

ΔG° = -31 kJ mol⁻¹ (at 300 K)

(I) Write the equilibrium constant, K_{eq} , for the reaction.

*K*_{eq} ' =

(II) Should water be included in the definition of the equilibrium constant above, since it is clearly a reactant? Explain your answer briefly.

(III) A reaction solution contains 1×10^{-9} M ATP, 4×10^{-4} M ADP, and 0.9 M Pi. Will the reaction go to the left or to the right under these conditions at 300 K? R = 8.31 J/mol/K. Circle your answer, and justify your choice with a calculation.

LEFT or RIGHT

QUESTION 5: Cytosol contains a 10⁵ smaller ratio of [NADH] to [NAD+] than in mitochondria.

(I) Using the Nernst equation, $E = E^{0}$ + (*RT / nF*) In[e⁻ acceptor]/[e⁻ donor], calculate the difference in redox potential difference, ΔE , for NADH and NAD+ between the mitochondria relative to the cytosol, where the difference is defined as $\Delta E = E_{mitochondria} - E_{cytosol}$. F = 96,485 C/mol; R = 8.31 J/mol/K. The temperature is 300 K. Show your work.

(II) With respect to NAD+ and NADH only, which environment is more reducing? Circle your answer and explain your response.

Cytosol

or

Mitochondria

QUESTION 6: Consider the Tables of Standard Redox Potentials, *E*⁰, on the following page.

(I) Is FAD a better oxidizer than NAD+? Explain your answer using numbers in the Table.

(II) What is the standard free energy difference, ΔG° , for the oxidation of FADH₂ with O₂, where FAD and H₂O are the final products?

(III) Using the ΔG° value for ATP hydrolysis given in **QUESTION 4**, how many moles of ATP could be produced if this oxidation of FADH₂ by O₂ described above in part II were perfectly coupled to the formation of ATP from ADP and Pi?

TABLE 13–7Standard Reduction Potentials of Some BiologicallyImportant Half-Reactions, at pH 7.0 and 25 °C (298 K)

Half-reaction	E'° (V)
$\frac{1}{2}O_2 + 2H^+ + 2e^- \longrightarrow H_2O$	0.816
$Fe^{3+} + e^- \longrightarrow Fe^{2+}$	0.771
$NO_3^- + 2H^+ + 2e^- \longrightarrow NO_2^- + H_2O$	0.421
Cytochrome $f(Fe^{3+}) + e^- \longrightarrow$ cytochrome $f(Fe^{2+})$	0.365
$Fe(CN)_6^{3-}$ (ferricyanide) + $e^- \longrightarrow Fe(CN)_6^{4-}$	0.36
Cytochrome a_3 (Fe ³⁺) + $e^- \longrightarrow$ cytochrome a_3 (Fe ²⁺)	0.35
$0_2 + 2H^+ + 2e^- \longrightarrow H_2 0_2$	0.295
Cytochrome a (Fe ³⁺) + $e^- \longrightarrow$ cytochrome a (Fe ²⁺)	0.29
Cytochrome c (Fe ³⁺) + $e^- \longrightarrow$ cytochrome c (Fe ²⁺)	0.254
Cytochrome c_1 (Fe ³⁺) + e ⁻ \longrightarrow cytochrome c_1 (Fe ²⁺)	0.22
Cytochrome b (Fe ³⁺) + $e^- \longrightarrow$ cytochrome b (Fe ²⁺)	0.077
Ubiquinone + $2H^+$ + $2e^- \longrightarrow$ ubiquinol + H_2	0.045
$Fumarate^{2-} + 2H^{+} + 2e^{-} \longrightarrow succinate^{2-}$	0.031
$2H^+ + 2e^- \longrightarrow H_2$ (at standard conditions, pH 0)	0.000

Source: Data mostly from Loach, P.A. (1976) In *Handbook of Biochemistry and Molecular Biology*, 3rd edn (Fasman, G.D., ed.), *Physical and Chemical Data*, Vol. I, pp. 122–130, CRC Press, Boca Raton, FL.

* This is the value for free FAD; FAD bound to a specific flavoprotein (for example succinate dehydrogenase) has a different E'° that depends on its protein environments.

TABLE 13–7Standard Reduction Potentials of Some BiologicallyImportant Half-Reactions, at pH 7.0 and 25 °C (298 K)

Half-reaction	E'° (V)
$2H^+ + 2e^- \longrightarrow H_2$ (at standard conditions, pH 0)	0.000
Crotonyl-CoA + $2H^{+} + 2e^{-} \longrightarrow$ butyryl-CoA	-0.015
$Oxaloacetate^{2-} + 2H^+ + 2e^- \longrightarrow malate^{2-}$	-0.166
$Pyruvate^{-} + 2H^{+} + 2e^{-} \longrightarrow lactate^{-}$	-0.185
Acetaldehyde + $2H^+$ + $2e^- \longrightarrow$ ethanol	-0.197
$FAD + 2H^+ + 2e^- \longrightarrow FADH_2$	-0.219*
Glutathione + $2H^+$ + $2e^- \longrightarrow 2$ reduced glutathione	-0.23
$S + 2H^+ + 2e^- \longrightarrow H_2S$	-0.243
Lipoic acid + $2H^+$ + $2e^- \longrightarrow$ dihydrolipoic acid	-0.29
$NAD^{+} + H^{+} + 2e^{-} \longrightarrow NADH$	-0.320
$NADP^+ + H^+ + 2e^- \longrightarrow NADPH$	-0.324
Acetoacetate $+ 2H^+ + 2e^- \longrightarrow \beta$ -hydroxybutyrate	-0.346
α -Ketoglutarate + CO ₂ + 2H ⁺ + 2e ⁻ \longrightarrow isocitrate	-0.38
$2H^+ + 2e^- \longrightarrow H_2$ (at pH 7)	-0.414
Ferredoxin (Fe ³⁺) + $e^- \longrightarrow$ ferredoxin (Fe ²⁺)	-0.432

Source: Data mostly from Loach, P.A. (1976) In *Handbook of Biochemistry and Molecular Biology*, 3rd edn (Fasman, G.D., ed.), *Physical and Chemical Data*, Vol. I, pp. 122–130, CRC Press, Boca Raton, FL.

* This is the value for free FAD; FAD bound to a specific flavoprotein (for example succinate dehydrogenase) has a different $E^{\prime \circ}$ that depends on its protein environments.

QUESTION 7: Reaction mechanism.

(I) Draw the cis-enediol intermediate of the following reaction in the blank in the center. The reactant and product of the reaction are given at the left and right, respectively.

(II) What type of enzyme mechanism best explains how this transformation occurs?