
Developmental Cell

Meeting Review
Brinkley-Fest of Mitosis

Rebecca Heald1,*
1 Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
*Correspondence: bheald@berkeley.edu
DOI 10.1016/j.devcel.2007.07.010

‘‘Mitosis: Spindle Assembly and Function,’’ a conference in honor of Dr. Bill R. Brinkley, brought
together many researchers to discuss progress in the field and celebrate the many contributions
that Dr. Brinkley has made.
A FASEB meeting in honor of Dr. Bill Brinkley, organized

by Conly Rieder and Bob Palazzo, was held near Palm

Springs in June 2007. The hot topic, fueled in part by the

fiery desert venue, was all things mitosis. The 55 speakers

and 57 posters covered subjects ranging from the G2/M

and metaphase/anaphase transitions to kinetochore/

centrosome function, spindle assembly, chromosome

segregation, cytokinesis, and microtubule pharmacol-

ogy—many areas in which Brinkley has made major

contributions over the past 50 years. Below I describe

some of the work presented and highlight recent

advances.

Kinases, Phosphatases, and Mitotic Progression
The key upstream regulator of mitosis (Figure 1) is cyclin-

dependent kinase 1 (Cdk1), in complex with its activator

cyclin B, whose synthesis is required for mitotic entry,

and destruction for mitotic exit. Jon Pines highlighted

the importance of localization of cell cycle regulators for

proper mitotic progression. By following the disappear-

ance of GFP-tagged cyclins in cultured cells using time-

lapse fluorescence microscopy, he saw that targeting

cyclin B to the centromeres of chromosomes preserved

proper timing of its destruction, while localizing it to the

plasma membrane or spindle poles delayed its degrada-

tion. Interestingly, the anaphase promoting complex or

cyclosome (APC/C), which marks substrates for destruc-

tion by modifying them with ubiquitin, is also found on

chromosomes, suggesting that a key strategy for degra-

dation of mitotic regulators is to colocalize them with the

mediators of their destruction. However, the APC/C is

also found at spindle poles, and Peter Jackson described

a mechanism by which anchoring APC/C at the poles in

a complex with Emi1, NuMA, and dynein (the END net-

work) actually prevents premature cyclin B degradation

(Ban et al., 2007). Therefore, localization on the spindle

can provide either positive or negative regulation of cyclin

B stability and exit from mitosis.

Mitotic induction by Cdk1 requires not only cyclin B

accumulation but also the removal of an inhibitory phos-

phate group, which is mediated by Cdc25 phosphatase,

which in turn functions in opposition to Wee1 kinase.

Protein localization is also a key regulatory mechanism

at this step, when nuclear accumulation of both Cdk1/

cyclin B and Cdc25 tip the balance toward Cdk1 dephos-

phorylation and activation (Hutchins and Clarke, 2004).
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The opposing Wee1 kinase itself is an active topic of

investigation, and Tin Tin Su described experiments in

Drosophila embryos showing that Wee1 has additional,

Cdk1-independent roles in regulating microtubule growth

and organization during spindle assembly by interacting

with and likely phosphorylating other targets, including

the gamma tubulin ring complex that promotes microtu-

bule nucleation (Stumpff et al., 2005), and the mitotic kine-

sin-5, which promotes spindle bipolarity.

Another kinase that has an important impact on mitotic

entry is the p38 stress-activated kinase. Conly Rieder

showed that when human cells are exposed to stresses

like microtubule inhibitors, osmotic shock, or DNA dam-

aging agents during the G2 phase of the cell cycle, p38

is activated and mitotic entry is delayed, an effect that

can be mimicked by adding the p38 activator Anisomycin.

Rieder surveyed isogenic cell lines to evaluate the efficacy

of this arrest pathway at different stages of cancerous

transformation, using long-term, time-lapse phase

microscopy that allowed him to measure mitotic dura-

tions. Although p38 could be activated in transformed

cells, its ability to arrest the cells decreased with increas-

ing degrees of transformation, indicating a checkpoint

bypass that fosters oncogenesis. Greenfield (Kip) Sluder

spoke about another pathway of cell cycle arrest that

depends on p38 but operates in G1. This pathway can

be activated by a variety of insults, including cell microsur-

gery, laser ablation, or even exposure to blue light. Thus,

stresses that would not impact the cell cycle on their

own can act additively to activate a p38-dependent arrest

in G1.

Numerous kinases, including the Polo and Aurora

kinase families, are crucial for progression through mito-

sis. Distinguishing among the multiple mitotic roles of

a single kinase has been difficult because standard

approaches, like RNA interference, are not rapid enough,

and kinase disruption can have indirect effects leading to

cell cycle arrest through checkpoint activation. Prasad

Jallepalli described an approach to circumvent these

problems and study Polo-like kinase 1 (Plk1) function in

late mitosis. Using gene knockout techniques in human

tissue culture cells, endogenous Plk1 was replaced with

a mutant version that could be drug-inhibited rapidly, spe-

cifically, and with great temporal precision. This chemical

genetics approach revealed a role for Plk1 to promote

cleavage furrow formation by targeting RhoA GTPase to
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the equatorial cortex during anaphase (Burkard et al.,

2007). Aurora A and B kinases are well known to play roles

in spindle microtubule organization and chromosome

segregation. In addition, Karen Oegema described a

microtubule-independent role for Aurora A in regulating

the timing of nuclear envelope breakdown (Portier et al.,

2007). The much less well-characterized Aurora C kinase

is a current topic of investigation in the Brinkley lab, as

reported by Rebecca MacCorkle. Aurora C is expressed

only in mammals, primarily in developing gametes. Their

experiments indicate that it can operate in pathways sim-

ilar to those of Aurora B, interacting with chromosomal

passenger protein complex members as well as the

centromeric histone CENP-A, thereby regulating chromo-

some congression and segregation during mitosis and

meiosis.

Centriole Assembly and Duplication
One cellular structure that continues to fascinate is the

centrosome, an extremely important microtubule organiz-

ing center (MTOC), which in vertebrate cells consists of

a pair of centrioles surrounded by amorphous pericentrio-

lar material (PCM), where microtubule nucleation takes

place (Doxsey et al., 2005). The centrosome plays key

roles in cell division, making centrosome assembly, dupli-

cation, and function active areas of investigation. Centro-

some duplication begins during S-phase when new

daughter centrioles grow orthogonally to the existing

ones. Tim Stearns showed how centrosome duplication

is ‘‘licensed’’ for the next cell cycle by disengagement of

the two centrioles during mitotic exit (Tsou and Stearns,

2006). Interestingly, centriolar disengagement is regulated

by Separase, the same protease that promotes sister

chromatid separation at the onset of anaphase. It will be

of great interest to determine (1) whether the centrosomal

function of Separase requires its protease activity, and (2)

the identity of its downstream targets.

To ask whether centriolar duplication requires a specific

template site on the mother centriole, Alexey Khodjakov

demonstrated that brute force can be applied with great

precision. He used a laser to ablate a newly forming

Figure 1. A Newt Lung Cell in Mitosis
Fluorescence micrograph of a newt lung cell in mitosis showing the
mitotic spindle stained for microtubules (green) and chromosomes
(blue). Keratin is in red. Image taken by Conly Rieder.
daughter centriole in S-phase arrested cells and found

that another daughter subsequently forms on the mother,

but not necessarily at the same site. Their model is that the

mother does not provide a defined template for centriole

assembly, but rather organizes the PCM to provide a

permissive environment for daughter formation. In his

talk, Jordan Raff described his lab’s work, which shows

that the Drosophila centriolar protein Sas-4 is required

for centriole replication. Mutant fly embryos lacking

Sas-4, which is essential for the rapid early divisions that

require centrosomes, develop normally thanks to mater-

nally supplied protein. Sas-4 mutant adults completely

lack centrioles and centrosomes, but remarkably, they

are morphologically quite normal. However, these flies

die soon after birth because they also lack sensory cilia

essential for them to eat (Basto et al., 2006).

Another approach to get at the interesting question of

how centrioles assemble has been taken by Alexander

Dammermann and Karen Oegema, who have developed

a quantitative fluorescence-based assay to examine the

process in the early C. elegans embryo. Dammermann

described his results from using embryos expressing

GFP-tagged SAS-6 and SAS-4, proteins required for

sequential steps in centriole assembly. By elucidating

the dynamics of these key centriolar components in living

embryos, this approach provides an important step to-

ward a molecular understanding of centriole duplication.

Multiple Mechanisms of Spindle Assembly
Much of the current research on spindle assembly aims to

elucidate the multiple mechanisms that function in parallel

to promote formation of the bipolar microtubule array

(Kline-Smith and Walczak, 2004; Wittmann et al., 2001).

By acting as microtubule nucleation centers and defining

the spindle poles, duplicated centrosomes constitute an

important cue in most cell types. Chromosomes also

promote spindle assembly by providing microtubule cap-

ture sites at their kinetochores and biochemical activities

through chromatin-localized enzymes such as RCC1,

the guanine exchange factor that generates a chromo-

some-centered gradient of RanGTP (Goodman and

Zheng, 2006). RanGTP controls multiple essential func-

tions during mitosis by releasing spindle assembly factors

(SAFs) from importin nuclear transport receptors, thereby

promoting microtubule nucleation and organization

around chromatin (Gruss and Vernos, 2004).

Distinguishing the relative contribution of centrosome-

and chromatin-mediated mechanisms in cells harboring

both elements has been a challenge. Pat Wadsworth

described her lab’s creative approach using mitotic mam-

malian cells treated with nocodazole to depolymerize

spindle microtubules and subjected to an incomplete

nocodazole washout, thereby slowing microtubule re-

growth and allowing better visualization of different micro-

tubule populations. Inhibition of the Ran-regulated SAF

TPX2 impaired microtubule polymerization at chromo-

somes, but not at centrosomes, which could still capture

chromosomes and move them rapidly poleward due to

activity of the microtubule minus-end-directed motor
Developmental Cell 13, August 2007 ª2007 Elsevier Inc. 169
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cytoplasmic dynein (Yang et al., 2007). Interestingly, al-

though chromosomes were captured, kinetochore fibers

never formed in the absence of TPX2 (Tulu et al., 2006),

suggesting that both centrosomal and chromatin path-

ways play essential roles in proper spindle assembly.

Claire Walczak discussed experiments elucidating the

function of another minus-end-directed spindle motor,

the human kinesin-14 HSET. Their model is that RanGTP

regulates the ability of HSET to cross-link kinetochore

fibers to spindle microtubules, which impacts both spindle

length and kinetochore fiber function.

Another Ran-regulated SAF is Maskin, a member of the

transforming acidic coiled-coil (TACC) family of microtu-

bule-associated proteins studied by Christine Wiese. Wi-

ese described biochemical assays to dissect Maskin’s

functions at the centrosome, showing that Maskin is not

required for microtubule nucleation at reconstituted cen-

trosomes, but without Maskin, these centrosomes display

a higher rate of microtubule release. Maskin/TACC plays

multiple roles in centrosome function and spindle assem-

bly (O’Brien et al., 2005), and the Wiese lab has shown that

Ran regulates the phosphorylation of Maskin by Aurora

A kinase (Albee et al., 2006). An important goal is to de-

termine whether and how Ran regulates other Maskin

activities.

RanGTP is not the only signal generated by chromo-

somes. Hiro Funabiki spoke about a different chromatin

pathway of spindle assembly mediated by Aurora B,

a component of the chromosomal passenger complex

(CPC), which includes INCENP, Survivin, and Dasra A/B

(Gassmann et al., 2004; Sampath et al., 2004). Hiro’s lab

has shown that phosphorylation of Aurora B substrates,

such as histone H3 and stathmin, is suppressed by phos-

phatases in the cytoplasm, but CPC binding to chromatin

induces substrate phosphorylation (Kelly et al., 2007).

Interestingly, microtubules can also induce substrate

phosphorylation. Since the Ran pathway promotes micro-

tubule stabilization, it may create a positive feedback loop

by promoting CPC pathway activation. A feature charac-

teristic of the CPC is its translocation from the segregating

chromosomes to the spindle midzone during anaphase

(Vader et al., 2006). Tarun Kapoor described fluorescence

resonance energy transfer (FRET)-based sensors to

monitor Aurora B kinase activity in living cells. Together,

experiments addressing the molecular mechanisms and

dynamic localization of CPC activity are providing new in-

sights into the role of this complex in spindle assembly and

function.

Specifying Centromeres
An essential element of chromosome inheritance is the

centromere, which defines the site of kinetochore forma-

tion on each sister chromatid, allowing their attachment

to the spindle and accurate segregation to daughter cells.

Centromere assembly in most species, with the exception

of budding yeast, is not specified by DNA sequence, but

by an epigenetic mark. The basis of this mark is thought

to be a histone H3 variant called centromere protein A

(CENP-A), which assembles into centromeric nucleo-
170 Developmental Cell 13, August 2007 ª2007 Elsevier Inc.
somes. Bill Brinkley played a key role in elucidating cen-

tromere specification by helping to characterize human

autoantisera that by immunofluorescence analysis recog-

nized antigens present at centromere regions (Brenner

et al., 1981). These sera were later used by Bill Earnshaw

to identify CENP-A, CENP-B, and CENP-C (Earnshaw and

Rothfield, 1985; Earnshaw et al., 1987). This opened up

the field by facilitating molecular characterization of kinet-

ochores, and the two Bills have generously provided these

reagents to many researchers in the field. Furthermore,

the Brinkley lab was the first to show that overexpression

of CENP-A could recruit other kinetochore proteins to ec-

topic sites on chromosomes (Van Hooser et al., 2001),

which supported the notion that CENP-A nucleosomes

act not only as a mark but also as the structural foundation

for kinetochore assembly.

Recently, major progress has been made toward under-

standing how and when CENP-A is deposited at centro-

meres during the cell division cycle, and the mechanisms

by which CENP-A chromatin directs assembly of the

kinetochore-spindle microtubule interface. Don Cleveland

described his lab’s work identifying the CENP-A centro-

mere targeting domain (CATD), which can confer centro-

mere-specific nucleosomal properties to histone H3,

including the ability to rescue the depletion of endogenous

CENP-A (Black et al., 2004, 2007). Using a variety of

cleverly tagged CENP-A variants, the Cleveland lab iden-

tified a group of novel proteins associated with CENP-A

nucleosomes (Foltz et al., 2006). They also showed that

new CENP-A incorporation is temporally restricted to

early G1 and requires exit from mitosis (Jansen et al.,

2007). A complementary approach to investigate kineto-

chore specification has been taken in Arshad Desai’s

lab, using RNA interference-based screens in C. elegans

to identify factors that result in a ‘‘kinetochore-null’’

(KNL) phenotype, first defined by inhibition of CENP-A.

Desai discussed KNL-2, a Myb-DNA binding domain-con-

taining protein that is required for incorporation of CENP-A

into centromeric histones, and whose localization to cen-

tromeres is restricted to the time of new CENP-A incorpo-

ration (Maddox et al., 2007). Also through use of affinity

tags, the Desai lab has identified a large group of interact-

ing kinetochore proteins that span all the way from centro-

meric chromatin to the microtubule interface (Cheeseman

et al., 2006). Together, these and similar studies recently

published by the group of Mitsuhiro Yanagida (Fujita

et al., 2007) advance our understanding of centromeric

chromatin assembly and provide a framework for investi-

gating the molecular mechanisms of higher-order kineto-

chore assembly (Carroll and Straight, 2007).

CENP-A is clearly necessary for centromere assembly

and function, but what is sufficient to specify a centro-

mere? The Keynote Lecture by Bill Earnshaw addressed

this interesting question. Bill and his collaborators Hiroshi

Masumoto and Vladimir Larionov have created a faithfully

transmitted human artificial chromosome (HAC) using a

DNA array based on a repeated alpha satellite sequence

containing a CENP-B binding motif and tet-operators,

to which proteins can be targeted by transfection of
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tet-repressor fusions. Interestingly, the HAC, which also

recruits CENP-A and CENP-C, was strongly destabilized

by targeting of a transcriptional transactivator that pro-

motes heterochromatin formation. These experiments

highlight that the epigenetic centromere is sensitive to

chromatin conformation. The opportunity to target differ-

ent proteins into an active centromere provides a novel

approach to investigate both mechanistic and structural

aspects of the kinetochore.

Kinetochore-Microtubule Attachments
To understand how the kinetochore-microtubule interface

is built up from the centromere, a critical question is where

the �50 known kinetochore proteins localize relative to

one another. Ted Salmon described a fluorescence

imaging technique, kinetochore-speckle high-resolution

colocalization (K-SHREC), which can locate protein

epitopes along the axis of sister kinetochores at meta-

phase to an accuracy of �15 nm. The relative positions

of CENP-A and several distal kinetochore components in-

volved with microtubule attachment, including the Ndc80

complex, the Mis 12 complex, and Knl1, have already

been determined (Kotwaliwale and Biggins, 2006; Wei

et al., 2007). This approach promises to provide novel

information about the dynamic mechanical behavior of

kinetochore proteins under different conditions of micro-

tubule attachment and tension. The rate of protein turn-

over at kinetochores is also an important issue. Jagesh

Shah described methods using fluorescence recovery

after photobleaching (FRAP) and fluorescence correlation

spectroscopy (FCS) to study how checkpoint proteins at

the kinetochore could transduce signals to the cytoplasm

to inhibit the APC and prevent anaphase onset when

kinetochore-microtubule attachments are absent or

incorrect (Shah et al., 2004; Wang et al., 2006). Current

efforts are focused on a novel checkpoint protein,

p31comet, and dynamics measurements have led to

a computational model supporting the hypothesis that

an unattached kinetochore both activates an APC inhibitor

and inhibits an APC activator.

The depletion of many different varieties of kinetochore

proteins leads to defects in spindle microtubule attach-

ment. An ongoing challenge is to distinguish which of

these are required to build the kinetochore structure in

the first place, which ones directly mediate microtubule

attachments, and which ones function to correct improper

attachments by regulating microtubule-kinetochore inter-

actions (Maiato et al., 2004). Tim Yen described a novel

mammalian protein called Tripin/Sgo2 that appears to

fall into the third class. Tripin-depleted cells displayed

chromosome attachment defects resulting in lagging

chromosomes at anaphase. The underlying cause is

thought to be the mislocalization of the microtubule-

destabilizing protein MCAK, which is implicated as part

of an elaborate error-correction system that eliminates

improper microtubule-kinetochore connections so that

correct end-on attachments can be made (Huang et al.,

2007). Another exciting development in the field has

been the discovery of a set of kinetochore proteins that
leads a double life, localizing to the nuclear pore during

interphase. Mary Dasso discussed this class of nucleo-

porins that moonlights in mitosis, including the nine-

protein Nup107-160 complex, which is kinetochore

associated throughout mitosis, and RanGAP/RanB2/

Ubc6(sumo ligase), which requires microtubules, as well

as RanGTP and the exportin CRM1, for its delivery to ki-

netochores (Arnaoutov et al., 2005). Interestingly, altering

levels of RanGTP inhibits kinetochore function (Arnaoutov

and Dasso, 2003), and RanGTP/CRM1 function is

required for proper kinetochore fiber formation and micro-

tubule attachment. These studies demonstrate that, in ad-

dition to its role in spindle assembly, the Ran pathway

plays important roles at the kinetochore that compel fur-

ther investigation.

Kinetochores and Chromosome Movement
Organized chromosome movement depends on the inter-

action of dynamic spindle microtubule fibers (K-fibers)

with the kinetochores of each sister chromatid, and struc-

tural studies are crucial to understanding the basis of this

interaction. Bill Brinkley was among the first to investigate

kinetochore structure by electron microscopy, and his

classic work (Brinkley and Stubblefield, 1966) has

spawned many generations of subsequent studies. This

field is still very active, and the Palm Springs conference

included several presentations exploring the structural

and mechanical features of the kinetochore-microtubule

interface. In vertebrates, the critical juncture between mi-

crotubule plus-ends and kinetochores occurs at the outer

plate, a 50 nm thick disk-shaped structure. Bruce McE-

wen described his study of this plate by electron tomo-

graphy of PtK1 cells, which revealed a network of

cross-linked 10 nm diameter fibers in the absence of mi-

crotubules. The fibers became shorter upon microtubule

attachment, with some fibers forming a radial mesh

around microtubule ends, and other fibers extending out

to attach to microtubule walls (Dong et al., 2007). These

observations support a model in which the outer plate

functions as a flexible network that rearranges to form

multiple, low-affinity attachments to each microtubule

(Cheeseman et al., 2006). The network model differs

from the repeat subunit model first proposed by Bill

Brinkley’s lab in that microtubule-binding components

are distributed throughout a network rather than orga-

nized into multiple discrete microtubule binding sites.

Nevertheless, electron tomography also provides evi-

dence that the outer plate network is organized into multi-

ple, loosely connected patches. These patches could cor-

respond to the linear array of CREST-containing subunits

observed when centromeric DNA is stretched (Zinkowski

et al., 1991). This modified version of the repeat subunit

model retains the strong appeal of accounting for the

structural and evolutionary diversity of kinetochores and

centromeres among eukaryotic chromosomes of many

species.

An exciting development has been the identification in

budding yeast cells of a mechanistically plausible coupler

that could simultaneously ensure stable spindle fiber
Developmental Cell 13, August 2007 ª2007 Elsevier Inc. 171



Developmental Cell

Meeting Review
attachment to chromosomes and permit microtubule

shortening. The Dam1/DASH complex, a heterodecameric

kinetochore protein assembly with a strong affinity for mi-

crotubules, can polymerize into rings around microtubules

in vitro (Miranda et al., 2005; Westermann et al., 2005), and

was discussed by Julie Welburn from the Nogales lab.

Rings around kinetochore microtubules have not yet

been seen by electron microscopy of yeast cells, but the

coupling properties of rings may have significant advan-

tages. A ring whose inner diameter is larger than that of

the microtubule wall, and one that binds tubulin with

strong, flexible links, is capable of transducing a large

fraction of a microtubule’s conformational energy while

maintaining a firm grip on its depolymerizing end. These

features appear to be particularly well suited for budding

yeast, where each kinetochore is stably attached to only

one microtubule. The Dam1/DASH complex has not yet

been found in organisms other than yeasts, and even in

fission yeast, its components are not essential for mitosis

(Sanchez-Perez et al., 2005). Thus, other structures are

more likely to be the physiologically significant couplers

in most mitotic spindles.

Several microtubule-dependent motor enzymes, in-

cluding dynein and two or three kinesins, have previously

been identified as components of the kinetochore, so

much of the field has focused on the role of motors in chro-

mosome-to-pole motion. The talk by Richard McIntosh,

however, cast this problem in a different light. He summa-

rized work from his lab showing ATP-independent chro-

mosome motion in vitro, suggesting that microtubule de-

polymerization can drive anaphase-like movements

(Lombillo et al., 1995); then, he sketched more recent

work on mutant fission yeasts. Deletion of the genes en-

coding all of this cell’s pole-directed motor enzymes had

no effect on the maximal speed of poleward chromosome

motion, suggesting that other factors can drive these

movements in vivo (Grishchuk and McIntosh, 2006). His

group is now studying structures that bind microtubules

to kinetochores and that might transduce the energy

stored in microtubules into the work necessary for mitotic

motions. Using electron tomography to examine the struc-

ture of the kinetochore-microtubule interface in mamma-

lian cells, the McIntosh lab has observed slender fibrils

that run from centromeric chromatin to the tips of microtu-

bules, where individual protofilaments are splaying out-

ward as a manifestation of microtubule dynamics. The

connection to bending protofilaments suggests that these

fibrils may be mechanical couplers between microtubule

dynamics and chromosome motion, and the structural

similarity between the kinetochore fibrils and the phyloge-

netically conserved Ndc80 kinetochore protein complex

(Wei et al., 2007) carries the hopeful possibility that this

kind of coupling mechanism will be found in mitotic struc-

tures from a wide range of organisms.

Although microtubule-kinetochore coupling mecha-

nisms may be motor independent, a number of motor pro-

teins function to position mitotic chromosomes in animal

cells at least in part by stimulating microtubule dynamics.

Jason Stumpff from Linda Wordeman’s lab described
172 Developmental Cell 13, August 2007 ª2007 Elsevier Inc.
their study of Kif18A, a kinesin-8 motor. This interesting

class of kinesins can translocate to and subsequently dis-

assemble the plus-ends of microtubules. High-resolution

live cell imaging and kinetochore tracking experiments re-

vealed that Kif18A overexpression suppresses prometa-

phase chromosome oscillations, while its depletion pro-

motes chromosome motility and oscillation amplitude,

suggesting that Kif18A functions to increase the switching

rate between poleward and antipoleward chromosome

movement while decreasing the velocity of chromosome

movement.

Anaphase and Cytokinesis
The ultimate goal of chromosome attachment and move-

ment by spindle microtubules is to segregate the sister

chromatids to opposite spindle poles so that the cytoki-

netic furrow can divide the cell into two daughters, each

with a full complement of chromosomes. During anaphase

A in higher eukaryotes, chromosomes move poleward by

two mechanisms linked to microtubule depolymerization.

Kinetochores actively depolymerize attached microtubule

plus-ends, a behavior termed ‘‘Pacman’’ (after the Namco

video game Pac-Man), and are reeled into the spindle

poles by a continual poleward movement of the microtu-

bule lattice driven by minus-end depolymerization, called

flux. David Sharp’s lab has been exploring the roles of mi-

crotubule-depolymerizing kinesins that promote ana-

phase A chromosome movements at the kinetochore

and the spindle pole in Drosophila embryos and S2 cells

(Rogers et al., 2004). Their latest experiments have identi-

fied another depolymerase, Klp59D, which contributes to

the rate of microtubule depolymerization at both sites.

Sharp also described evidence for roles of three different

microtubule-severing enzymes. Spastin and Fidgetin lo-

calize to the centrosome, where they could potentially ex-

cise gamma tubulin ring complexes from microtubule

minus-ends, while Katanin is present on the anaphase

chromosomes, where it may stimulate microtubule depo-

lymerization and Pacman chromosome motility (Zhang

et al., 2007). Helder Maiato then described an additional

possible role for microtubule flux. When poleward micro-

tubule flux in Drosophila S2 cells is blocked, anaphase

poleward chromosome movement becomes highly asyn-

chronous, which could lead to chromosome missegrega-

tion. Thus, flux may promote mitotic fidelity by providing

a uniform distribution of spindle forces (tension) that con-

trols and coordinates chromosome segregation.

Anaphase B, the process of spindle pole separation,

also plays an important role in the physical relocation of

sister chromatids to daughter cells. Jonathan Scholey

gave a historical perspective of his lab’s work in Drosoph-

ila embryos using biochemistry, microscopy, and

computational modeling approaches to learn how a kine-

sin-5-driven sliding filament mechanism cooperates with

antagonistic motors and microtubule dynamics to gener-

ate a balance of forces defining steady-state spindle

pole position during metaphase and anaphase A. In

response to cyclin B degradation at anaphase B onset,

this balance is tipped so that the spindle elongates. Based
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on their analysis of microtubule turnover before and just

following anaphase B initiation, the Scholey lab proposes

that spindle pole separation occurs upon inhibition of mi-

crotubule depolymerization at the spindle poles, allowing

outwardly sliding interpolar microtubules to drive pole-

pole separation. Modeling suggests that this would

depend on the establishment of a spatial gradient of

microtubule plus-end catastrophe frequencies which de-

crease toward the equator (Cheerambathur et al., 2007).

How the cytokinetic furrow is accurately positioned

midway between the spindle poles has been a topic of

long-standing investigation and debate (Glotzer, 2004),

and two talks at the meeting dealt specifically with this is-

sue. Dahong Zhang described the sophisticated methods

by which his lab uses micromanipulation of insect sper-

matocytes to move spindle components around and mon-

itor the distribution of contractile actin filaments. They

have found that microtubule asters exclude cortical actin

filaments, while overlapping plus-ends of central spindle

microtubules stimulate the formation of cortical actin

patches. These results indicate that two mechanisms pre-

viously proposed as alternatives, polar relaxation and

equatorial stimulation, actually cooperate to position the

division plane. Examination of diverse organisms can

help to reveal conserved players in the process. Fred

Chang described genetic and cytological approaches to

dissecting division plane positioning in fission yeast, in

which contractile ring position is determined by the loca-

tion of the nucleus prior to mitosis. Chang’s lab has iden-

tified the anillin-like protein, mid1p, as one important fac-

tor. It is a peripheral membrane protein that recruits other

contractile ring elements, but there are also both positive

and negative regulators of mid1p placement. One of the

negative regulators is pom1 kinase, which is localized to

the cell poles indirectly by microtubules. Thus, convergent

findings in both animal cells and yeasts indicate that pos-

itive equatorial signals and negative signals from the poles

contribute to proper placement of the division plane, and

understanding the molecular basis of these signals is

now coming within our grasp.

Aneuploidy and Checkpoints
Failures in chromosome segregation lead to aneuploidy,

a hallmark of cancer. However, the relationship between

aneuploidy and cancer, and the exact mechanisms by

which cancer cells become aneuploid, are poorly defined.

Two very interesting talks dealt with this topic. Duane

Compton presented a cell biological study of aneuploidy

in which he investigated the cause of chromosome misseg-

regation using live cell imaging to directly examine mitosis

in chromosomally stable and unstable cell lines, and

found a high incidence of lagging chromosomes during

tumor cell anaphase. Artificially increasing lagging

chromosomes with drug treatments increased the rate

of chromosome missegregation as measured by FISH,

and could induce chromosomal instability in normal cell

lines. A noteworthy finding of this study is that increasing

chromosome missegregation alone was not sufficient to

convert diploid cells into highly aneuploid cells, indicating
that other phenotypic changes are required to generate

the extreme ploidy changes characteristic of malignant

cells. Beth Weaver has identified the kinetochore kinesin

CENP-E as one factor crucial to maintenance of the

diploid state, and described experiments using CENP-E

mutant mice to investigate the effects of aneuploidy, since

CENP-E heterozgygosity causes whole-chromosome

aneuploidy in the absence of other defects, such as struc-

tural rearrangements of the chromosomes or elevated

levels of DNA damage. Interestingly, while Weaver found

an increase in spontaneous spleen and lung tumors in

aged animals, aneuploidy appeared to suppress tumor

formation in the context of a pre-existing chromosomal in-

stability, supporting the hypothesis that moderate rates of

chromosome loss drive tumorigenesis while high levels

promote cell death (Weaver et al., 2007).

To avoid chromosome segregation defects and aneu-

ploidy, cells have sophisticated surveillance mechanisms

to monitor whether two sister kinetochores are bound to

microtubules from opposite spindle poles. In addition to

mediating chromosome attachments and movements,

the kinetochore also serves as a platform for assembly

of checkpoint complexes that halt progression to ana-

phase in response to chromosome attachment defects.

However, one type of defect, called a merotelic attach-

ment, in which one sister kinetochore is connected to

microtubules from both spindle poles, does not activate

the canonical checkpoint. Daniela Cimini discovered that

merotelic attachments occur frequently in early prometa-

phase, and are a leading cause of aneuploidy (Cimini

et al., 2001, 2003). In her presentation, Cimini described

recently published results showing that Aurora B kinase

plays a critical role in preanaphase correction of merotelic

attachments by promoting microtubule turnover at the

kinetochore (Cimini et al., 2006). She also described cur-

rent experiments indicating that Aurora A kinase contrib-

utes to correction of merotelic attachments as well. The

next challenge is to determine whether the two Auroras

function through common or distinct pathways.

Several presentations addressed the functions of spe-

cific proteins involved directly or indirectly in the kineto-

chore-based checkpoint. Stephen Taylor described his

lab’s use of a conditional allele of the core checkpoint pro-

tein Bub1 to investigate its function in mice. Similar to

results from other checkpoint gene knockouts, Bub1 is

essential for early embryogenesis, but the use of a condi-

tional approach has allowed them to inactivate Bub1 at

later stages of embryogenesis and in adult tissues, reveal-

ing that Bub1 is also required for organogenesis and sper-

matogenesis. Based on experiments in cultured mouse

embryo fibroblasts, their working model is that Bub1 not

only prevents anaphase onset in the presence of un-

aligned chromosomes, but also promotes metaphase

chromosome positioning. Gordon Chan spoke about dy-

nein-associated protein ZW10, which appears to play a

supporting role in checkpoint function by affecting the tar-

geting and dynamics of core components (Karess, 2005).

The Chan lab is undertaking extensive structure-function

analysis of ZW10 to identify its functional domains, and
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Figure 2. Bill Brinkley ‘‘Roast’’ Dinner
Table
Left to right, standing: Bob Palazzo, Bill Brink-
ley, Kevin Brinkley, Don Cleveland, and Ted
Salmon; seated: Bill Earnshaw, Dick McIntosh,
Conly Rieder, and Tim Hunt.
has found that interaction with hZwint-1 is required for

stable hZW10 binding to prometaphase kinetochores

and checkpoint function, and that the Rod-ZW10-Zwint

complex responds to the loss of kinetochore tension by

accumulating at those kinetochores in an Aurora B kinase-

dependent manner.

In his talk, Bill Sullivan described an altogether different

kind of chromosome-mediated checkpoint, in which DNA

damage induced by site-directed endonuclease cleavage

can delay the metaphase-anaphase transition, dependent

on the Grp/Chk1 kinase (Royou et al., 2005). Interestingly,

acentric fragments induced by the cleavage recruit BubR1

and Polo and move to the poles during anaphase, leading

to the model that the metaphase delay provides time for

the chromosome fragments to generate ectopic kineto-

chores that allow them to be cleared from the metaphase

plate, thereby preventing them from interfering with cyto-

kinesis.

Perspectives
All at the Palm Springs meeting (selected participants are

pictured in Figure 2) would likely agree that it is an exciting

time to be studying mitosis. Many in the large cast of char-

acters playing regulatory and mechanical roles in cell divi-

sion have been identified, and we are now at the fascinat-

ing stage of mapping networks and figuring out exactly

how they function. The increasing sophistication and

beauty of imaging techniques, and the development of

chemical and computational tools, have revolutionized

the field. One notable theme was that multiple mitotic

mechanisms function in parallel to ensure fidelity of the

process and are utilized to differing degrees among or-

ganisms. This is great news, because it means that re-

searchers working in diverse systems can make important

contributions, and none of us should be out of work for

some time (funding issues aside!). Above all, the meeting

reminded us that Bill Brinkley is a pioneer and role model,

with regard to both his contributions to our understanding

of mitosis and his tireless advocacy of research.
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