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The cell interior is a busy and crowded place. A large fraction of

the cell volume is taken up by organelles that come in a variety

of shapes and sizes. These organelles are surrounded by

membrane that not only acts as a diffusion barrier, but also

provides each organelle with its unique morphology that

contributes to its function, often in ways that are poorly

understood. Here we discuss recent discoveries on the

relationship between organelle structure and function.
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Introduction
Organelles are dynamic, changing size and shape to

maintain homeostasis and adjusting to the various needs

of the cell. Some changes occur as part of the normal cell

cycle, for example during cell division [1–3]. Other

changes happen in response to challenges or stress and

reflect a modification in organelle function, such as a

change in protein folding capacity of the endoplasmic

reticulum (ER) or ATP production in mitochondria [4,5].

It is assumed that alterations to organelle morphology

reflect an underlying functional optimization. Yet, this

relationship is often poorly understood: for example, does

the peripheral endoplasmic reticulum (ER) have to be in

the shape of tubules in order to carry out its function?

Does mitochondrial size matter? In this review we discuss

recent advances in our understanding of the relationship

between organelle structure and function, focusing prim-

arily on the ER, nucleus and mitochondria. The reader is

referred to excellent reviews that cover earlier work on

Golgi [1], peroxosime [6] and endosome [7] structure.

Shaping a membrane-bound organelle
How are organelles shaped? The morphology of most

organelles is characterized by a combination of flat and

curved membrane, such as in the ER (Figure 1a). Cellular
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membranes are lipid bilayers made predominantly of

phospholipids and proteins, both of which can contribute

to membrane curvature. A difference in lipid composition

between the two bilayers can itself lead to membrane

curvature, and this likely drives the formation of the rims

of Golgi cisternae and the tubular structures that connect

the Golgi stack to form the ribbon [8]. Recently, a novel ER

structure made of a helicoidal surface was shown to connect

adjacent ER sheets [9��] (Figure 1b). This configuration,

which is akin to the ramps of a parking garage, appears to be

an energetically favorable structure that allows the dense

packing of ER sheets to accommodate maximum protein

synthesis in secretory cells. Thus, inherent properties of

membranes contribute to their degree of curvature.

Proteins also contribute to membrane curvature, as in the

case of the ER [10] (Figure 1c). Proteins called reticulons

and DP1/Yop1/REEPs contain hydrophobic domains that

form wedges on one side of the lipid bilayer, forcing it to

bend towards the opposite side. These proteins are

essential for maintaining ER tubules and are also

involved in the highly curved regions of the NE where

nuclear pore complexes are embedded. The tubular ER

network is also shaped by the formation of three-way

junctions, generated by homotypic membrane fusion

between the tip of one ER tubule and the side of another

in a process mediated by a conserved family of proteins

called atlastin/Sey1 [11�,12�]. Other proteins that contrib-

ute to membrane curvature are the BAR domain proteins,

which form a rigid crescent-shaped structure and force

membrane bending through electrostatic interactions be-

tween the concave surface of the protein dimer and the

membrane [13]. Proteins also contribute to the constant

luminal width of low curvature double-membrane struc-

tures, such as ER cisternae and the nuclear envelope, by

acting as spacers within the luminal space [14�,15]. Thus,

organelle morphology is driven, in part, by dedicated

proteins that affect membrane curvature and geometry.

Proteins that are not dedicated to altering membrane

shape may also contribute to organelle structure. For

example, the curvature of the cristae of the mitochondrial

inner membrane is stabilized by the presence of ATP

synthase [16,17], and the ER sheets are likely stabilized

by attached ribosomes [18]. Finally, membrane shape can

be affected by external cytoskeletal forces. One such

example is the formation of ER tubules through the

attachment of the ER to microtubule associated proteins

and the pulling forces exerted by microtubule elongation

and microtubule motors [19–21]. The combination of

lipid and protein composition, along with external forces,

provides each organelle with its unique morphology.
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Figure 1
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Diverse membrane structures in the ER. (a) The ER is an interconnected network composed of branched tubules and sheets, some of which can form

stacks, as shown in the illustration. ER tubules are stabilized by the oligomerization of proteins such as reticulons and DP1/Yop1/REEps (in red), while

3-way junctions are mediated by proteins such as atlastins (in blue). (b) The structure of reticulons and atlastin. Membrane curvature is induced by the

insertion of protein ‘wedges’ (two in the case of reticulons and one in the case of atlastin) that traverse only part way through the lipid bilayer, forcing

the membrane to curve. Atlastin has in addition GTPase activity that is necessary for fusing membranes and generating 3-way junctions. (c) Helicoidal

membrane structure in stacked ER sheets. A 3D reconstruction of a region of stacked ER sheets from an acinar cell of a mouse salivary gland. The

letters (a–d) mark the ER sheets that are connected through a helicoidal structure (to the left). From Ref. [9��].
Complex shapes allow for distinct functions
within a single organelle
While some organelles, such as the nucleus or the

vacuole, are simple in shape, other organelles, such as

the Golgi and the ER, have complex shapes made up of a

network of cisternae and tubules. This complexity allows

for segregation of biochemical processes within the orga-

nelle: for example, ribosomes are preferentially associated

with the flat ER membrane that forms the rough ER

[14�,18]. In contrast, ER tubules are engaged in processes

such as lipid synthesis and they are responsible for the

majority of contacts between the ER and other organelles.

Indeed, when the tubular structure of the ER is disrupted

in yeast, the efficiency of lipid transfer between the ER

and mitochondria is reduced [22�]. The ER forms mem-

brane contact sites (MCS) with virtually all organelles in

the cell; the juxtaposed membranes are typically 20 nm

apart and they are held together by protein complexes

that are unique to each organelle [23]. Traditionally, MCS

were thought of as sites for inter-organelle communi-

cation, such as exchange of Ca2+ and the transfer of lipids,

which are synthesized predominantly in the ER but are

needed by all membrane-bound organelles. More

recently, MCS between the ER and the mitochondria
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were shown to affect mitochondrial fission [24��]: ER

tubules wrap around mitochondria at future fission sites

and can constrict mitochondria even in the absence of the

mitochondrial fission machinery, such as the dynamin

related protein Dnm1/Drp1. The mechanism by which

this constriction occurs, and whether ER tubules affect

the structure of other organelles, remain to be deter-

mined.

Unlike the ER, the metazoan nucleus is usually a round

or oval structure with limited membrane curvature,

except where the inner and outer nuclear membranes

meet at nuclear pores. Thus, distinct domains within the

nucleus, if they exist, are not defined by nuclear mem-

brane-derived compartments. The budding yeast

nucleus, however, changes shape during the cell cycle:

while the metazoan nucleus disassembles in mitosis, the

budding yeast nucleus remains intact, and in anaphase it

forms an hourglass shape with only a narrow opening

connecting the nuclear compartments within the mother

and daughter cells. This opening is sufficiently small to

form a diffusion barrier between the two nuclear halves,

allowing the asymmetric  accumulation of a transcription

factor only in the daughter nuclear compartment [25�].
www.sciencedirect.com
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Widening of the opening connecting the mother and

daughter nuclear halves by genetic manipulations

allowed diffusion of proteins between the two compart-

ments, indicating that budding yeast cells take advantage

of cell cycle changes in nuclear shape to compartmenta-

lize the nucleus.

Organelle shape and cell function
It is likely that organelle shape, and in particular the

membrane configuration, has evolved to suit not only the

organelle’s biological activity, but also overall cell func-

tion. The formation of MCS discussed above is one such

example, and recent studies suggest that the reticular

nature of the peripheral ER is also important to allow

passage of macromolecules from the cytosol to the plasma

membrane. In fission yeast, for example, the localization

of a plasma membrane protein, Mid1, which usually

localizes in a sharp band at the cell midzone, was altered

to a more dispersed pattern in a mutant harboring per-

ipheral ER that was in the form of sheets rather than

tubules [26]. The subsequent identification of proteins

that link the ER to the plasma membrane in budding

yeast helped explain this result [27,28�]: when these ER-

plasma membrane tethering proteins were absent, the

peripheral ER collapsed to the center of the cell. Inter-

estingly, when these tethering proteins were removed

from the fission yeast mutant containing ER sheets

described above, the ER sheets detached from the plasma

membrane and Mid1 resumed its normal localization

pattern [29]. The authors interpreted this result to mean

that extensive ER sheets at the cell periphery may

obstruct proper protein localization at the plasma mem-

brane, and that the peripheral ER is in the form of tubules

in part to allow access of proteins like Mid1 to the plasma

membrane. Interestingly, sites of endocytosis do not

overlap with plasma membrane regions that are associated

with the ER [30], again suggesting that ER presence may

limit the accessibility of cytosolic proteins to the plasma

membrane. Taken together, these studies suggest that

the ER can both facilitate access to the plasma membrane

for ER components, through MCSs, but can block plasma

membrane accessibility of cytosolic factors.

Another example of organelle shape adapting to the cell’s

needs is seen in mitosis. Most organelles must change

shape and/or size (e.g. undergo fragmentation) during cell

division to ensure their own proper segregation to the

daughter cells. Less appreciated, until recently, was the

need to change shape in order to get out of the way of the

mitotic apparatus. Under certain pathological conditions

that lead to abnormal cellular structure, chromosome

segregation or nuclear division can be obstructed. For

example, the FAB1 gene, which is required to regulate

vacuole morphology, was initially identified in a screen for

chromosome segregation mutants in budding yeast

because the grossly enlarged vacuole in fab1 mutants

prevented nuclear elongation [31]. But do organelles
www.sciencedirect.com 
remodel to avoid obstructing the mitotic apparatus under

non-pathological conditions?

Following NE break down in vertebrate cells, many NE

components are resorbed into the ER. The ER itself is

conspicuously absent from the area of the mitotic spindle

and becomes enriched at spindle poles [18]. Two recent

papers describe microtubule-dependent mechanisms that

serve to keep the ER clear of the mitotic spindle, and in

one case this is essential for proper NE architecture

(Figure 2). Smyth et al. [32��] showed that phosphoryl-

ation of Stromal interaction molecule 1 (STIM1) keeps

ER off of spindle microtubules by dissociating it from the

microtubule plus end binding protein 1 (EB1). Schlaitz

et al. [33��] identified REEP4 in a proteomic screen for

membrane proteins that bind microtubules in Xenopus egg

extracts, and showed that depletion of REEP4 and its

close homolog REEP3 caused ER membrane to accumu-

late on mitotic chromosomes and become trapped inside

reforming daughter nuclei. Whereas expression of wild-

type REEP4 rescued the phenotype, a REEP4 mutant

defective in microtubule binding could not. Thus, while

phosphorylation of STIM1 prevents association of ER

membranes with microtubule plus ends, REEP3/4 func-

tion to concentrate these membranes near microtubule

minus ends at spindle poles, away from the chromosomes,

through an uncharacterized mechanism.

Changing shape in adaptation to stress
In addition to changes associated with the cell cycle, cells

may experience a need to increase the functional capacity

of an organelle, either due to specialization following

differentiation or under stress conditions, when the

activity of a certain cellular compartment must be

increased in order achieve homeostasis. A well-documen-

ted case is the unfolded protein response (UPR), which is

activated due to the accumulation of unfolded proteins in

the ER and leads to increased phospholipid synthesis that

drives ER expansion [34]. In a more recent example, a

pathway linking mitochondria shape changes to stress in

the form of nutrient deprivation has been identified

[35��,36��]. A catabolic process termed autophagy is

induced by starvation and proceeds through the formation

of a double-membrane vesicle, the autophagosome. Orga-

nelle and cytosolic components engulfed by the autop-

hagosome are recycled following fusion with lysosomes,

thereby prolonging cell survival when nutrients are

scarce. In separate studies, Gomes et al. and Rambold

et al. observed that mitochondria elongate during autop-

hagy, which spares their degradation (Figure 3).

Starvation-induced mitochondrial elongation is mediated

by down regulation of dynamin-related protein 1 (Drp1),

which prevents mitochondrial fission, leading to unop-

posed fusion. It is unclear whether elongated mitochon-

dria cannot be targeted to autophagosomes because of

their size or because they are not recognized in their fused

form. Why mitochondria are spared is another question.
Current Opinion in Cell Biology 2014, 26:79–86
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Figure 2
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Depletion of REEP3/4 causes accumulation of ER on mitotic chromosomes and leads to intranuclear membranes and lamina. (a) HeLa cells expressing

RFP-histone (red) to label the DNA and GFP-Sec61 (green) to mark the ER were subjected to control or REEP3/4 RNAi and imaged during mitosis.

Note the colocalization of ER and mitotic chromosomes in the absence of REEP3/4. (b) An interphase REEP3/4 RNAi-treated HeLa cell expressing

GFP-Sec61 (green) was fixed and stained for nuclear lamin B1 (red). Both NE markers are aberrantly localized to structures inside the nucleus. (c)

Schematic of phenotypes with microtubules in red, DNA in blue and ER in green. Adapted from Ref. [33��]. Images courtesy of Anne-Lore Schlaitz and

Rebecca Heald.

Figure 3

Control Starved
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Starvation leads to unopposed mitochondrial fusion. Mouse embryo fibroblasts transfected with mitoRFP were incubated in full nutrient medium

(Control), or starvation medium (Starved) for six hours. Starved cells show a continuous network of mitochondria. Cells were fixed and images acquired

by Structured Illumination Microscopy. Images courtesy of Angelika Rambold and Jennifer Lippencott-Schwartz.

Current Opinion in Cell Biology 2014, 26:79–86 www.sciencedirect.com
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Figure 4

DAPI Sec61-GFP RFP-NLS Merge
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Micronuclei are unstable in somatic cells. The images show a U2OS cell containing an intact nucleus and a disrupted micronucleus (arrowhead). The

micronucleus fails to accumulate the fluorescent nuclear protein RFP-NLS, and has been invaded by ER as indicated by the presence of Sec61-GFP.

Scale bar = 10 mm. Images courtesy of Emily Hatch and Martin Hetzer.
Elongated mitochondria have a higher density of cristae

and increased ATP production, which could spare amino

acids for protein synthesis rather than catabolism thereby

promoting cell survival under starvation conditions. In

addition, mitochondria may also provide membrane to

autophagosomes during starvation [37].

The importance of organelle size
In addition to having a distinct shape, organelles also have

a specific size. Organelle size may scale with cell size as

was shown in yeast for the nucleus [38,39] and more

recently for mitochondria [40�]. Organelle size may also

expand to accommodate the cell’s changing needs, as in

the case of ER expansion during the UPR or when

mitochondria fuse to evade autophagy, described above.

Thus, the size of an organelle undoubtedly affects its

function, but in only very few cases has organelle size

been manipulated to evaluate the consequences.

A recent study addressed the effects of assembling a very

small nucleus [41��]. Micronuclei form around an indi-

vidual or broken chromosome when it segregates impro-

perly during mitosis and becomes separated from the

main chromatin mass. Hetzer and colleagues showed that

although micronuclei appear to be structurally normal,

their nuclear envelopes frequently collapse due to defects

in assembly of the underlying network of intermediate

filaments, the nuclear lamina. Nuclear envelope collapse

is accompanied by chromatin compaction, invasion of the

ER, and loss of nuclear functions including transcription

and DNA replication, and can trigger massive DNA

damage, termed chromothripsis (Figure 4). Indeed, Pell-

man and colleagues [42] showed that DNA subjected to

fragmentation within micronuclei can be re-integrated

into the genome in subsequent cell divisions. Although it

is not currently known that size, per se, caused micro-

nuclei-dependent damage, the underlying causes of
www.sciencedirect.com 
micronucleus instability are likely to shed light on nuclear

function.

It is also the case that not all small nuclei are defective. In

certain large and rapidly dividing embryos, such as fish

[43] and frog [44], nuclear envelopes form around indi-

vidual or groups of chromosomes, rather than around the

entire DNA mass, likely so that DNA replication can

commence quickly. These micronuclei, termed karyo-

meres, fuse to form a mononucleus before the next

division. Abrams et al. identified a protein in zebrafish,

brambleberry, which is required for karyomere fusion

[45�]. Brambleberry mutants fail to fuse their karyomeres

but still develop normally, indicating that unlike micro-

nuclei in differentiated cells, these karyomeres are func-

tional. One possible explanation is that the embryonic

nuclear lamina stabilizes micronuclei during embryogen-

esis, since expression of a B-type lamin largely rescued

collapse of micronuclei in somatic cells. Or, perhaps

embryonic karyomere nuclear envelopes avoid collapse

because they need only persist for 30 min before the next

division, compared to the many hours of a typical somatic

cell interphase. The potential instability of micronuclei

highlights how nuclear morphology can dramatically

affect nuclear function. The many diseases associated

with defects in nuclear structure, such as laminopathies,

further illustrate that less dramatic structural defects than

nuclear envelope collapse nevertheless have strong nega-

tive consequences.

Conclusions
In this review we presented examples of the relationship

between organelles, their surrounding membranes and

morphology, and their function. In describing recent

studies, we highlighted some of the possible mechanisms

determining organelle shape, as well as the functional

consequences of altering their structure. Organelles differ
Current Opinion in Cell Biology 2014, 26:79–86
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in shape because the lipid and protein building blocks

involved in determining membrane shape are distinct,

resulting in the prototypical organelle shape we see by

light and electron microscopy. While textbooks typically

present a canonical set of organelle shapes, it is important

to remember that most organelles are dynamic, displaying

a rather wide range of possible shapes in different cell

types, under different conditions and among different

organisms.

There is still a lot that we do not understand about

organelle morphology, and in particular how organelle

size is determined and how morphology contributes to

organelle function. For example, at membrane contact

sites, the curved nature of ER tubules along with their

specific lipid composition [46] may provide an energeti-

cally favorable conformation for the detachment of

proteins or lipids that move between adjacent mem-

branes. Another example is organelle fragmentation,

which may have dual roles: it likely increases the odds

of equitable partitioning to daughter cells during mitosis,

but it may also serve to increase the surface area to

volume ratio under conditions where surface-associated

processes need to be upregulated. Finally, a fascinating

question is the reason for a constant nuclear/cell volume

ratio: it could simply be a byproduct of protein synthesis

rate, which may provide a proportional amount of build-

ing blocks for the cell and the nucleus (i.e. both are

controlled by the same upstream machinery). Alterna-

tively, this ratio could be kept constant by a dedicated, yet

unknown, regulatory mechanism that scales nuclear size

to cell size in order to regulate the intra-nuclear concen-

tration of signaling and chromatin associated factors,

thereby matching the transcriptional response to the cell’s

needs. Future studies on organelle structure-function

relationships will benefit from identifying the entire

repertoire of building blocks that determine organelle

morphology, and elucidating how they contribute to

organelle and cell function.
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