Fundamental limits on the rate of bacterial growth

Nathan BelliveauGriffin ChureChristina HueschenHernan GarciaJane KondevDaniel FisherJulie TheriotRob Phillips, Fundamental limits on the rate of bacterial growth, 

Abstract: 

Recent years have seen an experimental deluge interrogating the relationship between bacterial growth rate, cell size, and protein content, quantifying the abundance of proteins across growth conditions with unprecedented resolution. However, we still lack a rigorous understanding of what sets the scale of these quantities and when protein abundances should (or should not) depend on growth rate. Here, we seek to quantitatively understand this relationship across a collection of Escherichia coli proteomic data covering ≈ 4000 proteins and 36 growth rates. We estimate the basic requirements for steady-state growth by considering key processes in nutrient transport, cell envelope biogenesis, energy generation, and the central dogma. From these estimates, ribosome biogenesis emerges as a primary determinant of growth rate. We expand on this assessment by exploring a model of proteomic regulation as a function of the nutrient supply, revealing a mechanism that ties cell size and growth rate to ribosomal content.