Quantitative imaging of RNA polymerase II activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics

Simon AlamosArmando ReimerKrishna K. NiyogiHernan G. Garcia, Quantitative imaging of RNA polymerase II activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics

Abstract: 

The responses of plants to their environment often hinge on the spatiotemporal dynamics of transcriptional regulation. While live-imaging tools have been used extensively to quantitatively capture rapid transcriptional dynamics in living animal cells, lack of implementation of these technologies in plants has limited concomitant quantitative studies. Here, we applied the PP7 and MS2 RNA-labeling technologies for the quantitative imaging of RNA polymerase II activity dynamics in single cells of living plants as they respond to experimental treatments. Using this technology, we count nascent RNA transcripts in real-time in Nicotiana benthamiana (tobacco) and Arabidopsis thaliana (Arabidopsis). Examination of heat shock reporters revealed that plant tissues respond to external signals by modulating the number of cells engaged in transcription rather than the transcription rate of active cells. This switch-like behavior, combined with cell-to-cell variability in transcription rate, results in mRNA production variability spanning three orders of magnitude. We determined that cellular heterogeneity stems mainly from the stochasticity intrinsic to individual alleles. Taken together, our results demonstrate that it is now possible to quantitatively study the dynamics of transcriptional programs in single cells of living plants.