FUNCTIONAL AND STRUCTURAL COMPLEXITY OF SIGNAL TRANSDUCTION VIA G-PROTEIN-COUPLED RECEPTORS

Thomas Gudermann, Torsten Schöneberg, and Günter Schultz
Institut für Pharmakologie, Freie Universität Berlin, D-14195 Berlin, Germany

KEY WORDS: heptahelical receptors, receptor conformation, receptor folding and assembly, receptor–G protein interaction

ABSTRACT
A prerequisite for the maintenance of homeostasis in a living organism is fine-tuned communication between different cells. The majority of extracellular signaling molecules, such as hormones and neurotransmitters, interact with a three-protein transmembrane signaling system consisting of a receptor, a G protein, and an effector. These single components interact sequentially and reversibly. Considering that hundreds of G-protein-coupled receptors interact with a limited repertoire of G proteins, the question of coupling specificity is worth considering. G-protein-mediated signal transduction is a complex signaling network with diverging and converging transduction steps at each coupling interface. The recent realization that classical signaling pathways are intimately intertwined with growth-factor–signaling cascades adds another level of complexity. Elaborate studies have significantly enhanced our knowledge of the functional anatomy of G-protein-coupled receptors, and the concept has emerged that receptor function can be modulated with high specificity by coexpressed receptor fragments. These results may have significant clinical impact in the future.

RECEPTORS AND G PROTEINS AS INTEGRAL COMPONENTS OF TRANSMEMBRANE SIGNALING PROCESSES
Fine-tuned communication between individual cells is a prerequisite for maintaining homeostasis within a living organism. Cells have the ability to process
vast amounts of information conveyed to them by extracellular signals (such as hormones, neurotransmitters, autacoids, growth factors, and odorants) and by physical signals (such as light). Most of these signals do not enter the cell but affect receptors at the cell surface. In principle, transmembrane signaling processes are governed by two fundamentally different and seemingly unrelated mechanisms. Some membrane receptors (e.g. ligand-gated ion channels, protein tyrosine and serine/threonine kinase receptors, phosphoprotein phosphatases or guanylyl cyclase receptors) intramolecularly combine an extracellular ligand-binding domain and an intracellular (in the case of enzymes) or transmembrane effector domain (a pore in the case of ion channels) (Fülle et al 1995, Iismaa et al 1995, Yang et al 1995). This first transduction principle is thus characterized by a rigidly coupled receptor-effector system. Most intercellular signaling molecules, however, bind to membranous receptors that represent one element of a three-component transmembrane signaling system whose individual elements interact sequentially and reversibly. Agonist binding to a specific receptor results in activation of heterotrimeric guanine nucleotide–binding proteins (G proteins) acting as transducers and signal amplifiers. G proteins subsequently modulate the activity of effectors, such as enzymes, ion channels, and transporters, resulting in rapid alterations of second messenger (e.g. cAMP, inositol phosphates, diacylglycerol, arachidonic acid, and cytosolic ion) concentrations (Birnbaumer et al 1990, Hepler & Gilman 1992, Birnbaumer & Birnbaumer 1995, Neer 1995).

Basic Architecture of G-Protein-Coupled Receptors

G-protein-coupled receptors constitute a large and diverse superfamily (Baldwin 1994, Strader et al 1994, Gudermann et al 1995). Family members have been identified in organisms as evolutionarily distant as yeast and man. To date, several hundred G-protein-coupled receptors have been cloned. The total number, including an ever growing subgroup of odorant receptors, is assumed to exceed 1000. A comparison of the primary structures of G-protein-coupled receptors indicates that these proteins are patterned according to a common structural principle. They belong to a superfamily of integral membrane proteins characterized by seven hydrophobic stretches of amino acids that are predicted to form transmembrane α helices, connected by alternating extracellular and intracellular loops (Dohlman et al 1991, Baldwin 1994). The N terminus of these heptahelical receptors is located extracellularly; the C terminus extends into the cytoplasm.

Amino acid alignments of cloned receptors allow the construction of dendrograms that reflect the evolutionary history of receptors (Donnelly et al 1994, Vernier et al 1995), thus helping researchers decipher the puzzling molecular and pharmacological diversity of these receptors. In general, amino acid
identities are highest in the predicted transmembrane spanning regions (TM) and fall off dramatically in the N and C termini and in the extra- and intracellular loops. This pattern may suggest a molecular basis for ligand and G-protein selectivity. The construction and functional expression of receptor chimeras and of receptors with single amino acid exchanges led to the identification of specific residues important for ligand binding (Dohlman et al 1991, Strader et al 1994, Gudermann et al 1995, Wess 1995). The most crucial contact points between catecholamines and the binding pocket of adrenoceptors are thought to be an asparagine in TM 3, two serine residues in TM 5, and a phenylalanine in TM 6, all located deep in the lipid bilayer (Strader et al 1994). As potential contact points between other monoamine ligands and their respective receptors were identified in corresponding positions, it was proposed that a binding pocket located deep in the level of the lipid bilayer represents a universal interaction and receptor activation site for all members of the seven transmembrane receptor family (Trumpp-Kallmeyer et al 1992). This model of agonist binding and receptor activation has also been applied to peptide hormone receptors. Directed mutagenesis experiments and molecular modeling of G-protein-coupled receptors indicated that the binding site for the neuropeptide vasopressin and for the tripeptide thyrotropin-releasing hormone (TRH) is situated in a deep cleft between the transmembrane helices of the respective receptors (Mouillac et al 1995, Perlman et al 1996). In particular, in the case of the TRH receptor, this view is not undisputed (Han & Tashjian 1995a,b), and a large body of experimental evidence stresses the importance of the receptor’s N terminus and extracellular connecting loops for the binding of peptide ligands (Strader et al 1994, Gudermann et al 1995, Schwartz & Rosenkilde 1996). Receptor–G protein contact sites are located on cytoplasmic parts of the receptor (see below).

Molecular Diversity and Structure of G Proteins

G proteins are heterotrimers composed of α, β, and γ subunits; they are classified based upon amino acid sequence similarity of their α subunits. To date, 23 distinct α subunits, including several splice variants of Gs, Gi, and Go, are known. These subunits are encoded by 17 different genes (Simon et al 1991, Kehlenbach et al 1995, Nürnberg et al 1995) and are subdivided into 4 families: Ga5, Ga11, Gaq, and Gar12 (Simon et al 1991). Concentrations of Gs/Go proteins in the cell considerably exceed those of other families, and in brain Go may amount to 1–2% of membrane protein (Hepler & Gilman 1992). Five β and eleven γ subunits have been described (Watson et al 1994, Morishita et al 1995, Ray et al 1995). β and γ subunits are tightly associated and can be regarded as one functional unit. The five known mammalian β subunits are characterized by a high degree of amino acid sequence identity, whereas γ subunits are considerably more diverse (Simon et al 1991, Watson et al 1994, Morishita et al
Activated receptors catalyze the exchange of GDP for GTP at the α subunit’s high-affinity binding site for guanine nucleotides, thus setting in motion a well-controlled dissociation-reassociation cycle of the α subunit and βγ dimer (Birnbaumer & Birnbaumer 1995). Both GTP-bound α subunits and βγ dimers are signaling molecules in their own rights and modulate the activity of specific effector systems (Birnbaumer 1992, Clapham & Neer 1993, Neer 1995).

Access to a new dimension of understanding G-protein structure and function has been made possible by solving crystal structures of the G-protein α subunits of transducin (Noel et al 1993, Lambright et al 1994, Sondek et al 1994) and of G1i (Coleman et al 1994), of Gβγ (Sondek et al 1996), and recently of two Gαβγ heterotrimers (Wall et al 1995, Lambright et al 1996). Gα proteins are composed of two principal domains, a Ras-like GTPase domain consisting of a six-stranded β sheet (β1–β6) surrounded by six helices (α1–α5 and αG) and an α helical domain consisting of one long central helix (αA) and five shorter helices (αB–αF). The guanine nucleotide binds tightly in a deep cleft between the GTPase and α helical domains. Although current dogma states that GDP-bound α subunits associate with βγ dimers to form monomeric Gαβγ heterotrimers, recent crystallographic analyses of GDP-bound Gαi1 indicate the formation of Gα multimeric complexes (Mixon et al 1995) brought about by head-to-tail contacts between N- and C-terminal microdomains. Earlier findings of large polydisperse arrays of G1, G0, and Gs in detergent extracts of plasma membranes lend further credence to the crystallographic results indicated above (Jahangeer & Rodbell 1993). Purification of Gα12 from rat brain yielded additional evidence for the existence of multimeric Gα complexes (Harhammer et al 1996), the biological relevance of which remains elusive.

Gβ subunits fold into a highly symmetrical β propeller (Wall et al 1995, Sondek et al 1996). The characteristic amino acid sequence motif of seven repetitive WD units (Neer et al 1994, Neer 1995, Neer & Smith 1996) is reflected in the approximate sevenfold symmetry of the propeller. Gγ binds to Gβ in an extended conformation devoid of intrachain tertiary interactions (Sondek et al 1996). Most noticeably, significant structural changes were not observed in G1βγ when structures of βγ subunits alone or complexed with Gα were determined (Lambright et al 1996, Sondek et al 1996). Thus, βγ subunits may function as a rigid scaffold with pre-positioned critical residues that mediate its interaction with GDP-bound Gα and other signaling components. Activation of βγ subunits occurs as a consequence of their release from Gα, and α subunits function as negative regulators of βγ dimers. There is biochemical evidence, however, that receptor–G protein interaction elicits a conformational change in the C terminus of the γ subunit to establish a high-affinity contact with the receptor (Kisselev et al 1995). Resolution of this issue awaits accomplishment...
of the ultimate goal of co-crystallizing activated heptahelical receptors and G-protein heterotrimers.

Several segments in the Ga molecule undergo structural changes upon GTP hydrolysis and are designated switch regions (Lambright et al 1994, Mixon et al 1995). The most dramatic changes occur in the switch II region. Interaction between α and βγ subunits takes place at two distinct interfaces. The most extensive contact area comprises or is close to the switch II region of Ga (Mixon et al 1995, Lambright et al 1996), thus providing a mechanistic explanation for subunit dissociation and reassociation depending on the guanine nucleotide bound to the α subunit. Binding of βγ subunits stabilizes the flexible switch regions in the inactive complex (Mixon et al 1995, Lambright et al 1996). A variety of biochemical and mutational studies have underscored the essential role of the α subunit’s N terminus for the interaction with βγ (Conklin & Bourne 1993). In the heterotrimer the Ga N terminus forms a helical segment that is stabilized by specific interactions with the β propeller of the β subunit, representing a second, independent interface between α and βγ subunits (Mixon et al 1995, Lambright et al 1996). The structure does not provide an obvious clue as to the specificity in the pairing of particular α and βγ subunits (Lambright et al 1996). Thus, the extent to which specificity is determined at the level of Ga-Gβγ interaction or at the level of the interaction of the receptor with a specific heterotrimer remains unknown. Effector contact sites of Ga have been mapped to areas encompassing and surrounding the switch II region (Berlot & Bourne 1992). Therefore, Gβγ- and effector-interacting surfaces of Ga may overlap significantly. As a consequence, Ga cannot interact with an effector unless it dissociates from βγ subunits. Activation of Gβγ occurs as a consequence of its release from Ga. Therefore, the Ga subunit functions as a negative regulator of Gβγ by limiting its degree of freedom within the cell and/or by covering those surface areas of Gβγ that interact with downstream effectors. The regions of yeast Gβγ that interact with downstream signaling components have been identified genetically by dominant negative mutants and map to the N-terminal coiled coil of Gβγ (Leberer et al 1992). None of the residues on yeast Gβγ that are assumed to form part of the effector site lie within a Ga/Gβγ interface, so it is an unresolved issue as to how Ga would block interaction with an effector that binds there. An interaction domain of the β1 subunit with two effectors, adenyl cyclase 2 and the muscarinic atrial potassium channel, was allocated to an N-terminal fragment of 100 residues of Gβ1 (Yan & Gautam 1996). As deduced from crystallographic data, the C-terminal part of this fragment is assumed to be masked by the α subunit in the Gaβγ heterotrimer.

As yet, it is not understood how an activated receptor catalyzes dissociation of GDP from a G-protein heterotrimer. Several regions in a G-protein heterotrimer are likely to be involved in this process. The most clearly defined Ga contact
sites with receptors comprise the C-terminal region of α subunits (summarized in Conklin & Bourne 1993, Gudermann et al 1996). In the structure of the heterotrimer, the C terminus of Gαi1 lying in proximity to the N terminus is released from the compact microdomain observed in free GDP-liganded Gαi1 (Mixon et al 1995, Lambright et al 1996) and is accessible for potential interactions with cytoplasmic receptor domains.

Evidence also exists for participation of the Gα N terminus in receptor interaction (Hamm et al 1988, Higashijima & Ross 1991, Taylor et al 1994). In addition, Neubig and colleagues (Taylor et al 1994) demonstrated that a peptide derived from a cytoplasmic portion of the α2 adrenergic receptor binds to a defined site of the Gβ subunit, and the identity of the γ subunit in a G-protein heterotrimer has also been invoked in specifying receptor–G protein interaction (Kleuss et al 1993). Considering the observed proximity of the Gα N terminus and Gγ C terminus on a common face of the heterotrimer (Lambright et al 1996) inserted into the plasma membrane via lipid modifications (Nürnberg et al 1995), the heterotrimer can be positioned relative to the plasma membrane to provide access of cytoplasmic receptor domains to large surface areas of α, β, and γ subunits (Wall et al 1995). A recently developed model for the receptor-Gαβγ complex specifies interactions between the receptor’s third cytoplasmic loop, the Gα N and C termini, and the β subunit, in addition to a contact between the receptor’s C-terminal tail and the Gβγ dimer (Lichtarge et al 1996). Because receptors cannot bind to regions of Gβ now known to be covered through interactions with α and γ subunits, blades 6 and 7 of the β propeller are likely to be involved (Wall et al 1995).

SELECTIVITY OF RECEPTOR–G PROTEIN INTERACTION

Considering that hundreds of G-protein-coupled receptors transduce signals by using a fairly limited repertoire of G proteins, the issue of specificity governing the coupling of receptors to G proteins is worth considering. What are the molecular determinants funneling highly selective signals through the G-protein bottleneck? One mechanism to impart selectivity on transmembrane signaling processes is realized by compartmentalization of signal transduction components in highly specialized cells. There is evidence that certain subsets of receptors, G proteins, and effectors reside within different cellular compartments that may or may not have access to each other (Neubig 1994). In the rod photoreceptor cell, for example, all components needed for photon reception and signal transmission are contained in the outer segment; most proteins are associated with the disc membrane or with the plasma membrane (Hofmann & Heck 1996). In vitro rhodopsin was found to stimulate GTP hydrolysis by
transducin and also by structurally related G proteins (Cerione et al 1985). In contrast, rhodopsin in the retina interacts effectively only with transducin because of the spatial restrictions imposed on receptors and G proteins in the disc membrane. An asymmetrical distribution of some receptors and G proteins has been described in neuronal growth cones (Strittmatter et al 1990), rat Sertoli (Dym et al 1991), and madin-darby canine kidney cells (Keefer & Limbird 1993, Keefer et al 1994, Saunders et al 1996, Wozniak & Limbird 1996). Furthermore, association of G proteins with elements of the cytoskeleton (Popova et al 1994), with a certain type of coated vesicles (i.e. caveolae) (Sargiacomo et al 1993) and with secretory vesicles (Helms 1995, Nürnberg & Ahnert-Hilger 1996) may contribute to varying distribution patterns in different cells.

A given cell is endowed with a certain complement of receptors; effectors; and G-protein α, β, and γ subunits. Expression of a variety of G-protein subunits may result in a tremendous number of distinct αβγ heterotrimers if all subunits can associate randomly. There is evidence, however, that a degree of specificity governs βγ dimer assembly and that not all possible combinations are formed (Pronin & Gautam 1992, Schmidt et al 1992, Garrity & Simonds 1994, Katz & Simon 1995). In the yeast two-hybrid system it was shown that different β and γ subunits interact with each other with widely varying efficacies (Yan et al 1996). In conjunction with the expression level of a given subunit in a mammalian cell, this preferential Gβ/Gγ interaction may determine which Gαβγ heterotrimers will be available and thus pave certain routes of signaling. In recent years the notion has been entertained that G-protein α subunits are not the sole determinant of selectivity in receptor–G protein interaction. The formation of interactive complexes between transducin βγ and rhodopsin has been reported (Phillips & Cerione 1992), thereby confirming earlier reports of interactions between rhodopsin and Gt βγ in the absence of α subunits (Kelleher & Johnson 1988, Fawzi et al 1991).

Both the isoprenoid moiety and the C-terminal primary amino acid sequence of γ subunits were highlighted as specific determinants of rhodopsin-transducin interaction (Kisselev & Gautam 1993, Kisselev et al 1994), and the prenyl group on the γ subunit appears to be an important determinant for the coupling of trimeric G proteins to the A1 adenosine receptor (Yasuda et al 1996). Differences in the efficacy of distinct βγ complexes to enhance β-adrenergic receptor kinase–mediated receptor phosphorylation were interpreted in terms of β subunits determining coupling to receptors and γ subunits specifying effector interaction (Müller et al 1993). This point of view is supported by recent findings (Taylor & Neubig 1994) that an activator peptide derived from the third cytoplasmic loop of the α2-adrenergic receptor binds specifically to the N terminus in the G-protein α subunit and to a site in the β subunit corresponding to blade 6 or 7 of the β propeller (Wall et al 1995).
In studies on the hormonal inhibition of voltage-gated Ca\(^{2+}\) channels, nuclear injection of antisense oligonucleotides directed against mRNA sequences of G-protein \(\alpha\), \(\beta\), and \(\gamma\) subunits provided compelling evidence that selectivity of receptor–G protein interaction is encoded by specific G-protein \(\alpha \beta \gamma\) heterotrimers (Kleuss et al 1993, Gudermann et al 1996). The antisense approach was extended recently to studies on the regulation of another effector system, i.e. phospholipase C-\(\beta\) isoforms. In rat basophilic leukemia cells permanently expressing the human m1 muscarinic receptor, carbachol was shown to stimulate phospholipase C via a \(\alpha_q/\alpha_{11}\beta_1/\beta_4\gamma_4\) complex (Dippel et al 1996). It is unknown whether \(\alpha_q\) and \(\alpha_{11}\) use common or distinct \(\beta\gamma\) dimers to couple this receptor to phospholipase C-\(\beta\). RBL cells endogenously express A\(_3\) adenosine receptors, which stimulate phospholipase C-\(\beta\) isoforms via pertussis toxin–sensitive G proteins. Applying the antisense approach outlined above, the A\(_3\) receptor was shown to be preferentially coupled to the effector enzyme via \(G_{i3}\) (E Dippel, F Kalkbrenner, B Wittig, G Schultz, manuscript in preparation). In the yeast two-hybrid system, different \(\beta\gamma\) subunit types differ in their efficacy to interact with two downstream effectors, adenylyl cyclase 2 and the muscarinic atrial potassium channel GIRK1 (Yan & Gautam 1996). Because the antisense experiments listed above monitor a combined interaction at the receptor–G protein as well as at the G protein–effector interface, these data must not be interpreted as a mere reflection of specific interactions of a G-protein heterotrimer with a receptor.

DIVERSITY OF RECEPTOR–G PROTEIN COUPLING

Signal Processing via Receptor Subtypes and Splice Variants

The fact that interaction of a distinct G protein with a given receptor in a certain cell is governed by a high degree of selectivity imparted by specific heterotrimers contrasts with the observation that signaling molecules may give rise to a focused response in one cell while eliciting a plethora of effects in a different cell. The generation of several second messengers by one extracellular stimulus is often mediated by ligands acting at related receptor subtypes that are encoded by different genes and display distinct G-protein-coupling characteristics. A remarkable versatility of receptor subtypes prevails within the family of G-protein-coupled receptors; for example, 13 mammalian G-protein-coupled serotonin receptors have been identified by molecular cloning (Lucas & Hen 1995), and these receptors show marked differences in their expression pattern and signal transduction properties.

The first cloned genes for G-protein-coupled receptors lacked introns in their coding region. However, isoforms of various receptors were subsequently found to arise through alternative splicing of the primary transcript of a single-copy gene. Alternatively spliced receptor isoforms that differ in their seven
transmembrane domains or their intracellular C termini have been implicated in altered receptor function (Gudermann et al 1996). Insertions or deletions of short peptide sequences from cytosolic loops connecting the transmembrane domains may affect the glycosylation pattern and intracellular trafficking as well as the coupling preference of a receptor for different G proteins (e.g. D2 dopamine receptor, Fishburn et al 1995; summarized in Gudermann et al 1996) or may allow for new coupling patterns or signaling efficacies that are specific for a certain splice variant [e.g. calcitonin and PACAP (pituitary adenyl cyclase–activating polypeptide) type I receptors; summarized in Gudermann et al 1996, Pisegna & Wank 1996]. In some cases, altered receptor function elicited by C-terminal receptor splice variants can be related to changes in agonist-induced desensitization and down-regulation (e.g. turkey β1-adrenoceptor, µ opioid and SSTR2 somatostatin receptors). In other instances, divergent C termini of receptors have been reported to profoundly affect ligand binding and G-protein-coupling characteristics (e.g. EP3 prostaglandin receptor isoforms).

Two different cDNAs coding for 5-HT4 serotonin receptors have been isolated that are the result of alternative splicing that generates a short and a long isoform diverging only in the cytoplasmic C terminus (Gerald et al 1995). Different sensitivity of these isoforms to GTPγS raises the possibility that each splice variant of the 5-HT4 receptor displays differential G-protein coupling. A third, N-terminally truncated isoform of the human calcitonin receptor binds calcitonin with high affinity and responds to calcitonin stimulation with increases in cAMP formation but displays a nearly tenfold lower functional potency of amylin compared to the human calcitonin 1a receptor (Albrandt et al 1995).

Nakamura et al (1995) described C-terminally truncated isoforms of peptide hormone receptors that bind the respective ligand with high affinity but are incapable of signal transduction by themselves (e.g. neuropeptide Y-Y1 receptor). Truncated LH receptor isoforms lacking the transmembrane domain were reported to bind 125I-hCG with high affinity and to enhance LH-stimulatable adenyl cyclase activity when coexpressed with the full-length receptor (Vu Hai-Luu Thi et al 1992), indicating a physical interaction between the variant and wild-type receptor. In contrast, coexpression of a truncated isoform and the wild-type human receptor for gonadotropin-releasing hormone (GnRH) inhibits GnRH signaling via the wild-type receptor, probably because of specific interactions between the two receptor proteins resulting in impaired maturation of the wild-type receptor (R Grosse, T Schöneberg, G Schultz & T Gudermann, manuscript in preparation).

Coupling of Receptors to Multiple G Proteins

To channel incoming signals into different directions, cells use divergent coupling patterns at the receptor–G protein and G protein–effector interfaces.
Activation of one G protein may give rise to a bifurcating signal, since not only does the GTP-bound α subunit convey a signal to effector molecules but βγ dimers can propagate part of the information (Clapham & Neer 1993). Coupling of a variety of receptors expressed primarily in neuronal and neuroendocrine cells (e.g. α2-adrenergic, A1 adenosine, M2 muscarinic, opioid, and somatostatin receptors) to various G proteins belonging to one family (i.e. the Gi/o family) has been demonstrated (summarized in Offermanns & Schultz 1994). In many cells studied, activation of this type of receptor elicits a functional triad consisting of inhibition of adenylyl cyclase (via Gi and/or βγ), activation of K+ currents (via βγ dimers derived from Gi/o), and inhibition of voltage-gated Ca2+ channels (via Go). The diversity of receptor subtypes and splice variants that might be expressed endogenously in a given cell complicates an unambiguous demonstration that agonists initiating multiple intracellular signals do so by interacting with a single receptor or by activating multiple receptor subtypes or splice variants that display a certain degree of signaling selectivity.

Several cloned, primarily Gi/o-coupled receptors have been shown to be capable of dual signaling, i.e. inhibition of adenylyl cyclase and stimulation of phospholipase C-β isoforms (see Gudermann et al 1996). Activated α subunits are thought to mediate inhibition of adenylyl cyclase, whereas βγ subunit released from activated Gi affect phospholipase C activity. The biological relevance of such dual signaling is obscure because Gq-coupled receptor subtypes for many of these ligands (e.g. acetylcholine, serotonin, adrenaline/noradrenaline) stimulate phospholipase C more effectively than Gi-coupled receptors.

Another aspect of dual signaling is highlighted by primarily Gs-coupled receptors, some of which stimulate phospholipase C in addition to adenylyl cyclase (summarized in Gudermann et al 1996). In analogy to the situation with Gi-coupled receptors, phospholipase C activation by Gs-coupled receptors requires high receptor densities and high agonist concentrations when compared to stimulation of adenylyl cyclase by the same agonist, and the effect on phospholipase C is rather weak even under optimal conditions. Activation of adenylyl cyclase and phospholipase C by Gs-coupled receptors was interpreted either in terms of coupling to G proteins belonging to two different families (Gs and Gq/11) or in terms of generation of GTP-bound Gαs and βγ subunits derived from Gs (Birnbaumer 1992).

A characteristic feature of phospholipase C stimulation via βγ as opposed to α subunits is the observation that higher concentrations of βγ subunits appear to be required (Camps et al 1992), thereby shifting the concentration-response curve toward higher agonist concentrations. However, the concentration of GTP-liganded α subunits required for half-maximal effector activation is a function of its rate constant for catalysis of GTP hydrolysis (kcat) (Taussig et al 1993). A rise in kcat resulting from the considerable activity of phospholipase
C-β1 as a GTPase-activating protein (GAP) (Berstein et al 1992) could necessitate higher concentrations of GTP-bound αq/11 as opposed to αs for half-maximal effector activation. This mechanism provides an alternative explanation for the reduced potency of various agonists to stimulate phospholipase C via primarily Gs-coupled receptors.

Allgeier et al (1994) demonstrated in native human thyroid membranes that dual signaling through the human TSH receptor is mediated by coupling to G proteins of the Gs and Gq families. An identical coupling pattern underlying the dual signaling potential was worked out recently for the PTH/PTHrP (Offermanns et al 1996) and H2 histamine receptors (Kühn et al 1996) (Figure 1).

As opposed to the coupling pattern introduced above, studies on the LH receptor revealed that Gs and Gi proteins are activated by the agonist-bound receptor to exert effects on adenyl cyclase and phospholipase C (Herrlich et al 1996) (Figure 1). In consonance with the latter findings, functional coupling of the mammalian β2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes (Xiao et al 1995) and to Gi proteins when expressed in baculovirus-infected Sf9 insect cells (B Kühn, T Wieland, KH Jakobs, T Gudermann & G Schultz, unpublished information) can be observed. The physiologic relevance of dual signaling by Gs-coupled receptors is unclear because receptor densities and hormone concentrations sufficiently high to elicit phospholipase C stimulation are rarely encountered in vivo and, in the case of the LH receptor, agonist-induced activation of Gi proteins was noted in MA-10 Leydig tumor cells in the absence of discernible phospholipase C activity (A Herrlich, G Schultz & T Gudermann, unpublished information). βγ subunits released after agonist stimulation may serve additional roles such as recruiting β-adrenergic receptor kinases to the cell membrane (Lohse 1993) or mediating Ras-dependent activation of MAPKs (mitogen-activated protein kinase) belonging to the ERK (extracellular signal-regulated kinase) family (Inglese et al 1995).

Apart from Gs/Gq and Gs/Gi dual signaling, further coupling patterns have been described (Figure 1). Muscarinic (M1 and M3) (Offermanns et al 1994b) and A3 adenosine receptors (Palmer et al 1995) have been shown to interact with Gq and Gi proteins, whereas the primarily Gq-coupled α11-adrenergic receptor (Horie et al 1995) also appears to activate Gi. Photolabeling of G proteins in platelet membranes in response to activation of the thromboxane A2 receptor showed increased incorporation of [α-32P]GTP azidoanilide into Gq and G12 proteins, whereas in the same membranes the activated thrombin receptor coupled to G proteins of three different families (i.e. Gq, Gi, and G12) (Offermanns et al 1994a). When human thyroid membranes are stimulated with bovine TSH, the thyrotropin receptor is able to couple to at least ten different G proteins belonging to all four G-protein families (i.e. Gs, Gq, Gi, G12) (Laugwitz...
Figure 1 Examples of dual or multiple coupling of receptors to different G-protein families. α1B-AR, α1B-adrenergic receptor; A3-R, A3 adenosine receptor (Palmer et al 1995); β2-AR, mammalian β2-adrenergic receptor (Xiao et al 1995, B Kühn, T Wieland, KH Jakobs, T Gudermann & G Schultz, unpublished information); CT-R, calcitonin receptor (Offermanns et al 1996); H2-R, histamine receptor (Kühn et al 1996); LH-R, lutropin/choriogonadotropin receptor (Herrlich et al 1996); M1-R, M1 muscarinic receptor (Offermanns et al 1994b); M2-R, M3 muscarinic receptor (Offermanns et al 1994b); PTH-R, parathyroid hormone receptor (Offermanns et al 1996); thrombin-R, thrombin receptor (Offermanns et al 1994b); TXA2-R, thromboxane A2 receptor (Offermanns et al 1994b); TSH-R, thyrotropin receptor (Laugwitz et al 1996).

et al 1996). Such a high level of diversity in receptor–G protein interaction is unprecedented and indicative of complex multifunctional signaling by the human TSH receptor.

A given receptor’s signaling ability critically depends on the type of cell expressing the receptor. The G-protein α subunits Gα15 and Gα16, whose expression is restricted to a subset of hematopoietic cells, have been shown to functionally couple several primarily Gs-coupled receptors (e.g. β2-adrenergic,
D₁ dopamine, V₂ vasopressin, A₂A adenosine receptors) and several G₁-coupled receptors (e.g. M₂ muscarinic, 5-HT₁A serotonin, µ opioid receptors) to β-isozymes of phospholipase C in a pertussis toxin-insensitive manner, notwithstanding these receptors’ inability to interact with G proteins of the G₉ family (Offermanns & Simon 1995, Wu et al 1995). However, the concept of Ga₁₁/₁₂ as universal G-protein adaptors (Milligan et al 1996) does not appear to hold true, because the CRK-1 chemokinine receptor (Kuang et al 1996) and the human and mouse AT₂ angiotensin II receptors (T Schöneberg & T Gudermann, unpublished information) failed to couple to Ga₁₁/₁₂ when receptors and G proteins were coexpressed in COS-7 cells. The potential for divergent cellular responses to a single agonist may depend on differential expression of signal transduction components (e.g. receptors, G proteins, effectors, and modulatory proteins such as receptor kinases) by different cells. Under ideal circumstances the expression and stoichiometry of signal transduction components should be characterized before attempting to interpret signaling data obtained from measurements of effector activity, an unsurmountable task in most instances. However, these considerations underscore the necessity to critically analyze whether responses noted in transfected cells provide useful information on the action of receptors in their native cellular background.

MOLECULAR ASPECTS OF SIGNAL PROCESSING
BY HEPTAHELICAL RECEPTORS

Receptor–G Protein Contact Sites
Distinct structural receptor determinants involved in G-protein interaction have been identified by using chimeras of different G-protein-coupled receptors. Functional analysis of hybrid adrenergic receptors emphasized the importance of the third cytoplasmic loop and vicinal transmembrane portions for selective G-protein recognition (summarized in Dohlman et al 1991, Gudermann et al 1995). A recent experimental approach of expressing cytoplasmic domains together with full-length receptors in the same cell resulted in inhibition of receptor signaling, thus corroborating the coupling mechanism outlined above (Luttrell et al 1993, Hawes et al 1994).

A further refinement in the construction of chimeras and extensive mutagenesis experiments led to a closer assignment of receptor portions thought to comprise G-protein coupling sites. In the adrenergic receptor system, cytoplasmic domains in juxtaposition to the plasma membrane, in particular those close to transmembrane helices 5, 6, and 7, have been implicated in G-protein coupling (see Dohlman et al 1991, Guan et al 1995). In the design of chimeric receptors, a domain of one protein is exchanged with an analogous but preferably
functionally diverse domain of another receptor. The aim is to correlate replacement of a particular structural domain with acquisition or alteration of a particular function. Chimeras constructed from structurally closely related receptors have been most instructive. Substitution of cytoplasmic domains of the AT₁ angiotensin II receptor with analogous segments of the AT₂ angiotensin II receptor revealed that discrete amino acid residues located in the N- and C-terminal part of the third cytoplasmic loop are crucially important for receptor function (Wang et al 1995). M₃/M₂ muscarinic receptor chimeras allowed researchers to identify small stretches of amino acids in the second intracellular loop and in the N- and C-terminal portion of the third cytoplasmic loop, and these amino acids fully account for the G-protein coupling preference of the M₃ muscarinic receptor (Blin et al 1995).

Coexpression studies with hybrid M₂/M₃ muscarinic receptors and C-terminally modified G-protein α₉ subunits (Conklin et al 1993) showed that a four–amino acid epitope (VITL) in the C-terminal portion of the third cytoplasmic loop specifically interacts with five C-terminal amino acids of an α₉/α₆ chimeric G protein to couple the M₂ muscarinic receptor to phospholipase C (Liu et al 1995a). The insertion of alanine residues into the C-terminal portion of the third cytoplasmic loop, thus moving the critical VITL motif into the cytoplasm, led to constitutive activity of mutant M₂ muscarinic receptors (Liu et al 1996). This finding is consistent with a model in which agonist binding to the M₂ muscarinic receptor leads to conformational changes that enable critical amino acid residues in cytoplasmic receptor domains to productively interact with G proteins.

The use of chimeric V₁A/V₂ vasopressin receptors as research tools revealed that the second intracellular loop of the V₁A receptor is required for coupling to G₁₁, whereas the third intracellular loop of the V₂ receptor is responsible for coupling to G₄ (Liu & Wess 1996). Thus, differential G-protein coupling profiles of individual members of a structurally closely related receptor subfamily may be mediated by different single cytoplasmic receptor domains. Systematic studies on muscarinic/β-adrenergic receptor chimeras (Wong et al 1990, Wong & Ross 1994) suggested that G-protein specificity of a given receptor may depend on the proper combination of multiple cytoplasmic receptor regions. As exemplified with rhodopsin (Ernst et al 1995) and metabotropic glutamate receptors (Gomeza et al 1996), the efficacy and selectivity of receptor–G protein interaction depends critically on multiple receptor regions being arranged to form a multiple-loop interactive conformation. However, the relative importance of a particular loop or segment must be assessed by experimental testing. There is no a priori certainty that related structural domains have similar functions in different receptors.

Several G-protein-coupled receptors have been shown to couple to more than one G protein (see above). It is unclear, however, whether contact sites
for different G proteins on cytoplasmic receptor parts can be differentiated or are identical. Mutation of a single alanine residue in the third cytoplasmic loop of the thyrotropin receptor resulted in a complete loss of coupling to phospholipase C, whereas TSH-induced cAMP formation remained unaltered (Kosugi et al 1992). Further studies revealed that the middle portion of the second cytoplasmic loop was of utmost importance for Gs-coupling. However, mutations in broadly distributed receptor portions affected TSH-stimulated inositol phosphate formation (summarized in Kosugi & Mori 1995).

Five isoforms of the PACAP type 1 receptor are generated by alternative splicing and are characterized by the absence or presence of one or two 84–base pair cassettes (hip- and hop-cassettes) inserted into the third cytoplasmic loop (Spengler et al 1993). Presence of a hip-cassette abolishes PACAP-induced phospholipase C stimulation but increases the half-maximal agonist concentration required for cAMP formation. The presence of a 16–amino acid insert in the first cytoplasmic loop of the human calcitonin receptor abolishes stimulation of phospholipase C while leaving cAMP formation unaltered (Nussenzveig et al 1994). The EC50 for the cAMP response, however, is 100-fold higher for the insert-positive compared with the insert-negative form (Moore et al 1995).

These examples do not necessarily indicate that structural receptor determinants governing the interaction with different G proteins were identified. A change in the conformation of cytoplasmic receptor domains may have impaired receptor–G protein coupling in general, most profoundly affecting G proteins that interact less efficiently with a certain receptor, resulting in complete abolition of only one signaling pathway. The construction and functional analysis of chimeric α_{2A}-adrenergic/5-HT1A serotonin and α_{2A}/\β_2-adrenergic receptors provided the first conclusive evidence that distinct receptor contact sites can be identified for different G proteins. A discrete structural determinant for agonist-promoted α_{2A}-adrenoceptor coupling to Gs is located in the N-terminal portion of the third cytoplasmic loop. This determinant is distinct and separable from the structural requirements for α_{2A}-adrenoceptor-Gi coupling (Eason & Liggett 1995). Further detailed analysis showed that both N- and C-terminal portions of the third cytoplasmic loop are required to mediate coupling of the α_{2A}-adrenoceptor to Gs. However, each of these portions independently supports coupling to Gi (Eason & Liggett 1996). (For additional information on receptor–G protein interaction, see Strader et al 1994, Birnbaumer 1995, Gudermann et al 1995, Wess 1995.)

Folding and Assembly of G-Protein-Coupled Receptors

Transmembrane helices of G-protein-coupled receptors are thought to be arranged sequentially, in a counterclockwise fashion (as viewed from the extracellular membrane surface) to form a tightly packed ring-like structure (Baldwin 1993, 1994). Studies on the bacterial proton pump bacteriorhodopsin indicated
that the integrity of amino acid chains connecting the membranous helices does not appear to be an essential prerequisite for a functional protein (Popot & Engelman 1990). In vitro, bacteriorhodopsin could be functionally reconstituted from individual receptor fragments resulting from proteolytic cleavage of various connecting loops (Liao et al 1983, Popot et al 1987).

Evidence has accumulated from studies with “split” G-protein-coupled receptors, indicating that heptahelical receptors are composed of various independent folding units (Table 1). In particular, receptor fragments generated by cleavage within the third cytoplasmic loop are able to form functional proteins when individual fragments (TM 1–5 + TM 6–7) are coexpressed in the same cell. Functional complementation of coexpressed, mutated muscarinic and
adrenergic receptors highlighted the autonomy of individual folding domains in that the functional rescue of mutated receptor could only be explained by an intermolecular exchange of independent N- and C-terminal fragments between different receptors (Maggio et al 1993a). In the case of rhodopsin (Ridge et al 1995, 1996) and the M₃ muscarinic receptor (Schöneberg et al 1995), multiple autonomous folding domains were characterized: coexpressed polypeptide pairs TM 1–3 + TM 4–7 (rhodopsin), TM 1–4 + TM 5–7 (M₃ muscarinic receptor), and TM 1–5 + TM 6–7 were able to form a properly folded receptor capable of ligand binding and signal transduction. When expressed alone, none of the individual fragments represented a functional protein.

Using immunological techniques, researchers showed that proteins representing N- and C-terminally truncated G-protein-coupled receptors were synthesized (Pan et al 1994, Schöneberg et al 1995, Unson et al 1995) but frequently displayed the tendency to be trapped within the endoplasmic reticulum. However, truncated M₃ muscarinic (Schöneberg et al 1995) and V₂ vasopressin receptors (Pan et al 1994; D Wenkert, T Schöneberg, JJ Merendino, MSR Pena, R Vinitsky, P Goldsmith, J Wess & AM Spiegel, unpublished information) as well as truncated rhodopsin mutants (Sung et al 1993) were targeted to the plasma membrane—albeit with reduced efficacy—and inserted in proper orientation. Studies with naturally occurring mutant V₂ vasopressin receptors revealed that the exchange of a single amino acid can profoundly reduce cell surface expression of the receptor (Birnbaumer et al 1994; D Wenkert, T Schöneberg, JJ Merendino, MSR Pena, R Vinitsky, P Goldsmith, J Wess & AM Spiegel, unpublished information), thus indicating impaired trafficking and/or membrane insertion of these mutated receptors. It has been suggested that the majority of naturally occurring mutations in the rhodopsin gene give rise to misfolded proteins that appear to be less compact in their structures than the correctly folded counterparts (Liu et al 1996, Garriga et al 1996).

The so-called lipophobic effect drives transmembrane helices of G-protein-coupled receptors to be clustered in the plasma membrane (Jühnig 1983) in order to minimize the surface area of polar residues exposed to the hydrophobic environment of the lipid bilayer. Furthermore, the exact relative orientation of individual helices appears to be determined by specific intramolecular interactions. Whether the process of packing and folding of the archetypical G-protein-coupled receptor rhodopsin occurs spontaneously, as in bacteriorhodopsin, or requires the participation of various chaperones (Thomas et al 1995) involved in cellular protein folding and assembly is unclear at present. Mutational studies with aminergic (i.e. adrenergic) (Suryanarayana et al 1992), muscarinic (Liu et al 1995b), serotonin (Sealfon et al 1995), and peptide hormone receptors (GnRH receptor) (Zhou et al 1994, Arora et al 1996, Awara et al 1996, Davidson et al 1996) demonstrate a close spatial proximity of specific
Figure 2 Hypothetical model of receptor fragment interaction and functional rescue. A truncated receptor (TM 1–5) can be functionally rescued by supplying the missing wild-type folding domain (TM 6–7) (complementation, upper panel). A misfolded receptor fragment resulting from a point mutation (dark cube) can be competed for by excess wild-type folding units, resulting in a functional receptor complex (competition, lower panel).
amino acid residues located within TM 1/2 and TM 7, which are remarkably distant in the primary protein structure. The creation of artificial metal ion-binding sites in the tachykinin NK-1 receptor and the κ opioid receptor (Elling et al. 1995, Thirstrup et al. 1996) allowed identification of distinct amino acid residues in TM 5 and 6 that are involved in helix-helix interactions. Folding and assembly of integral membrane proteins such as G-protein-coupled receptors may be governed by a two-step process (Popot & Engelman 1990): In step 1, individual α helices are assumed to be inserted into the plasma membrane in proper orientation, and in step 2, they may specifically interact with each other to form a functional protein. An analogous multi-step mechanism of protein folding and packing has explicitly been postulated for one of the best-studied model receptors, rhodopsin (Khorana 1992).

Based on the finding that G-protein-coupled receptors are assembled from multiple independently stable folding units, Wess and colleagues (Schöneberg et al. 1996) devised a coexpression strategy to functionally rescue inactive mutant V2 vasopressin receptors harboring nonsense, frameshift, deletion, or missense mutations in the third cytoplasmic loop or the last two transmembrane helices. The mutant receptors not only displayed severely impaired ligand-binding and signal transduction properties, but they were not trafficked properly to the cell surface. Several mutant receptors, however, regained functional activity and significant plasma membrane insertion upon coexpression with a C-terminal receptor peptide covering the amino acid sequence harboring the various mutations. Depending on the receptor defect, two general mechanisms of functional receptor rescue can be considered (Figure 2): (a) A prematurely terminated polypeptide chain caused by nonsense mutations or frameshifts can be functionally complemented by an analogous wild-type folding domain. (b) In the case of misfolded receptor proteins resulting from point mutations, the autonomous wild-type folding domain is thought to compete with the misfolded receptor segment for assembly into a tightly packed bundle of α helices. As expected, the latter mechanism is functionally less efficient than the former (Schöneberg et al. 1996). These findings may allow the rational design of novel strategies aimed at the treatment of human disease caused by inactivating mutations of G-protein-coupled receptors (Birnbaumer 1995).

CONCLUSIONS AND PERSPECTIVES

Recent experimental results have modified profoundly our understanding of G-protein-mediated transmembrane signaling. The conceptualization of signal transduction pathways in a linear fashion, i.e. one receptor coupling to one G protein that activates one effector, is inadequate to account for recent findings. The majority of heptahelical receptors interact with diverse G proteins and elicit
multiple intracellular signals. Interaction of a single G protein with a given receptor in a certain cell, however, may be governed by a high degree of selectivity. G-protein-mediated signal transduction can be regarded as a complex, highly organized signaling network (Offermanns & Schultz 1994) with diverging and converging transduction steps at the ligand-receptor, receptor–G protein, and G protein–effector interfaces. Coincidence detection (Bourne & Nicoll 1993) and gating (Iyengar 1996) allow for some crosstalk without masking cell-specific dominant pathways guiding the main flow of information.

The recent realization that classical signaling pathways are tightly intertwined with growth-factor–signaling cascades has added yet another level of complexity to this field (see Inglese et al 1995, Gudermann et al 1996). The transduction of G-protein-mediated mitogenic signals involves the Ras/mitogen-activated protein kinase (ERK-MAPK) cascade common to both G-protein-coupled receptors and receptor tyrosine kinases (van Biesen et al 1995). There is evidence, however, that in certain cells these signaling cascades are not activated independently. Receptor tyrosine kinases may function as downstream mediators in G-protein-initiated mitogenic signaling via ligand-independent receptor tyrosine kinase activation through intracellular crosstalk (Linseman et al 1995, Rao et al 1995, Daub et al 1996). The involvement of the small GTP-binding proteins Rac and Cdc42 in the cytokine-mediated regulation of c-Jun N-terminal kinases (JNKs) has been demonstrated (Cosso et al 1995, Minden et al 1995). Furthermore, human leukocyte p21-activated kinases (PAKs) can be regulated through G-protein-coupled receptors (Knaus et al 1995). Because PAKs are direct targets of Rac and Cdc42, these observations suggest a functional link between heterotrimeric G proteins and small GTPases belonging to the Rho subfamily.

Our knowledge about physiological roles of the pertussis toxin–insensitive G proteins of the G_{12} family is still vague. Those receptors shown to activate G_{12} and G_{13} (Offermanns et al 1994a, Laugwitz et al 1996) were characterized as coupling primarily to G_{q} (thromboxane A_{2} and thrombin receptors) or to G_{i} (thyrotropin receptor). It may be argued, therefore, that the lack of known receptors coupling primarily to G_{12} proteins is one major reason for the limited insight we have into physiological processes involving G_{12} and G_{13}. In addition to differential regulation of a Na^{+}/H^{+} exchanger (Dhanesekaran et al 1994), G_{12} class proteins stimulate Rho-dependent stress fiber formation and focal adhesion assembly (Buhl et al 1995). In NIH3T3 and HEK293 cells, an activated mutant of G_{12} has been reported to stimulate c-Jun N-terminal kinase via the small G proteins Ras and Rac (Collins et al 1996), whereas G_{13} failed to do so in transfected COS-7 cells (Cosso et al 1996). The small GTPase Rho (Machesky & Hall 1996) has been identified as a regulator of TCF (tertiary complex factor)-independent, SRF (serum response factor)-dependent signaling at the c-Fos
promoter (Hill et al 1995), and it is tempting to speculate that in analogy to Rac1 and Cdc42, RhoA will also couple to a MAPK cascade whose elements still need to be defined. The above-mentioned findings suggest that such a pathway would also be regulated through heterotrimeric G proteins. The functional interplay between heterotrimeric and low-molecular-weight GTPases thus emerges as an exciting field of future investigation.

Numerous elaborate studies have enhanced markedly our knowledge of the functional anatomy of G-protein-coupled receptors. Researchers speculated that the association of N- and C-terminal receptor domains may occur not only intra- but also intermolecularly, thus indicating a molecular basis for receptor dimerization. Thus, studies with cotransfected chimeric α2-adrenergic and M3 muscarinic receptors (Maggio et al 1993a) and with two binding-defective angiotensin II receptor mutants (Monnot et al 1996) demonstrated that intermolecular interactions can occur between heptahelical receptors. A dimerization domain for β2-adrenergic receptors has been allocated to TM 6, and the functional importance of receptor dimerization was emphasized by the observation that peptide-mediated inhibition of dimerization also inhibited agonist-induced adenylyl cyclase activity (Hebert et al 1996). The interconversion of G-protein-coupled receptors between monomeric and dimeric states may therefore be important for biological activity. Functionally inactive receptor mutants can specifically be rescued by cotransfection of receptor fragments. In theory, constitutively active receptor could in turn be silenced by specific receptor fragments. Such a finding may lead to the development of novel therapeutic strategies for the treatment of human diseases caused by constitutively active receptors (Parma et al 1994) for which inverse agonists are not available.

The basic GTPase cycle is extrinsically controlled by three regulatory proteins: Guanine nucleotide exchange factors (GEFs) accelerate the release of bound GDP, whereas guanine nucleotide dissociation inhibitors (GDIs) counteract this process. GTPase-activating proteins (GAPs) accelerate the rate of intrinsic GTPase reaction and shorten the life span of the protein in its active, GTP-bound conformation. In the case of heterotrimeric G proteins, the receptor fulfills the role of a GEF, and βγ subunits functionally behave as GDIs. Two downstream effectors have been described as GAPs: phospholipase C-β and the γ subunit of a retinal cGMP-specific phosphodiesterase (summarized in Ross 1995). The GAP activity of a given effector may contribute to the specificity of signaling because a receptor has to be a highly effective exchange catalyst and have a high affinity for the G protein to remain stably bound in a proposed highly active receptor–G protein–effector complex (Biddlecome et al 1996). Yeast genetics has recently allowed identification a novel family of regulators of G-protein signaling (RGS) (Siderovski et al 1996). Three out of 15 isolated mammalian gene products (i.e. GAIP, RGS4, and RGS10) have been shown to
function as GAPs for the G\textsubscript{i} subfamily (Berman et al 1996, Hunt et al 1996, Watson et al 1996). At present it is unknown whether GAPs also exist for G proteins belonging to the G\textsubscript{s} and G\textsubscript{12} subfamilies and whether RGS family members function as effectors or adaptors in addition to their role as GAPs. The molecular basis for the selective GAP activity toward G\textsubscript{i} family members is also not understood. The controlled expression of RGS family members, however, represents a versatile tool for the biological regulation of G-protein signaling activity in the cell.

ACKNOWLEDGMENTS

The authors are indebted to KP Hofmann and W Rosenthal for critically reading the manuscript. We would like to thank many colleagues for helpful discussions and for making preprints available to us. The authors’ own research reported herein was supported by the Deutsche Forschungsgemeinschaft (DFG) and Fonds der Chemischen Industrie.

Literature Cited

Awara WM, Guo C-H, Conn PM. 1996. Effects of Asn\textsubscript{115} and Asp\textsubscript{117} Asn\textsubscript{118} mutations on signal transduction by the gonadotropin-releasing hormone receptor and receptor regulation. Endocrinology 137:655–62

Berman DM, Wilkie TM, Gilman AG. 1996. GAIP and RGS4 are GTPase-activating proteins for the G\textsubscript{s} subfamily of G protein \alpha subunits. Cell 86:445–52

Birnbaumer M, Gilbert S, Rosenthal W. 1994. An extracellular congenital nephrogenic diabetes insipidus mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand, and coupling to...
the G\textsubscript{i} adenyl cyclase system. *Mol. Endocrinol.* 8:886–94

Blin N, Yun J, Wess J. 1995. Mapping of single amino acid residues required for selective activation of G\textsubscript{i,13} by the m3 muscarinic acetylcholine receptor. *J. Biol. Chem.* 270:17741–48

the D2 dopamine receptor. J. Biol. Chem. 270:29619–24
Jahangeer S, Rodbell M. 1993. The disaggregation theory of signal transduction revisited: further evidence that G proteins are

424 GUDERMANN, SCHÖNEBERG & SCHULTZ

Mixon MB, Lee E, Coleman DE, Berghuis AM, Gilman AG, Sprang SR. 1995. Tertiary and quaternary structural changes in Go1 induced by GTP hydrolysis. Science 270:954–60
Nüssenzveig DR, Thaw CN, Gershengorn MC. 1994. Inhibition of inositol phosphate second messenger formation by intracellular loop one of a human calcitonin receptor. J. Biol. Chem. 269:28123–29
Offermanns S, Iida-Klein A, Segre GV, Simon ML. 1996. Gαq family members couple PTTH/THP and calcitonin receptors to phos-

Sealfon SC, Chi L, Ebersole BJ, Rodic V, Zhang D, et al. 1995. Related contribution of specific helix 2 and 7 residues to conformational ac-
tivation of the serotonin 5-HT2A receptor. J. Biol. Chem. 270:16883–88

