Lecture 6

Chromosome Structure and Function in Mitosis

Outline: Chromosome Organization and Function in Interphase Chromatin effects on replication Effects of nuclear organization on gene expression **Chromosomes in Mitosis** SMC proteins: Condensins and Cohesins **Centromeres and Kinetochores**

Paper: Loss of the Suv39h Histone Methyltransferases Impairs Mammalian Heterochromatin and Genome Stability

Chromatin Structure and DNA Replication

DNA replication is 'simple'....

...though the regulation of molecules (e.g. DNA polymerases, helicases) is not...

Chromatin is also 'Replicated' Semi-conservatively

requires

energy remodeling factors (Swi/Snf helicases) assembly factors CAFs-canonical histones HIRA-histone variants

Epigenetic Patterns are Reestablished after Replication

Histones contain specific acetylated K residues prior to assembly removed after assembly

removal required for other modifications of new nucleosomes, eg methylation

parental nucleosomes and their modifications segregated to daughter strands

propagation of modifications on new nucleosomes based on parental nucleosomes via binding protein / modification enzyme mechanism (e.g. HP1 and Su(var)3-9)

Propagation of a 'Silent' Epigenetic State

Su(var)3-9 : H3 K9 methyltransferase HP1 / Su(var)2-5 : chromodomain, binds H3 K9 Me & 3-9

Replication is Initiated at 'Origins'

normally sequence dependent in cerevisiae, probably epigenetic in higher euks

Temporal Control of Replication during S phase

synchronize cells add labeled nucleotides (e.g. BrdU) at different times in S look at patterns in mitotic chromosomes

Timing of Replication in Yeast is Chromatin-Dependent

identification of ARSs (Autonomously Replicating Sequences)

Replication Timing and Activity is Chromatin-Dependent in Yeast

each rDNA copy (in tandem arrays) contain an ARS, but only 20% 'fire'

telomeric regions 'silenced' for gene expression-also replicate late in S

(Ferguson and Fangman 1992; Weinreich et al. 2004)

Gene expression is also dependent on chromosome structure and nuclear organization

not able to be expressed

Lampbrush loops in Amphibian Oocytes

proteins forming chromosome scaffold

histone modifying enzymes chromatin remodeling complexes RNA polymerase

Andy Belmont

chromosomes marked with lacO sites bound by lacR-RFP

unlooping observed in real time after tx activation

Effects on expression in the context of nuclear architecture

Brown-Dominant: A model for effects of nuclear organization of chromosomes on gene expression

Dernburg

bw expressed

use FISH probes-mark positions of **bw** and heterochromatin (satellites)

В

nucleus from a wild-type embryo

bw normally basal, AAGAG apical Brown+ associates with heterochromatin in tissues relevant to eye expression

larval imaginal discs (eye precursor)

association is specific to the SAME chromosome, not heterochromatin in general

bw locus AACAC dodeca 🔜 α–lamin Ab X 2 AACAC 3 dodeca 4 🔳

bw+ normally in euchromatic 'compartment' bw-D 'loops' in cis to associate with 2 heterochromatin, due to AAGAG insertion

bw+ / bw-D - bwD associates in trans with bw+, 'loops' bw+ in trans to associate with 2 heterochromatin and silence gene expression of bw+

Mitotic chromosome structure and function

High Salt extraction of chromosomes reveals 'scaffold'

Condensins and Cohesins

~1990- cerevisiae screens for defective chromosome inheritance

genes required for Structural Maintenance of Chromosomes (SMC proteins)

conserved from bacterial to human, ATPases

crucial roles in chromosome segregation (mitosis and meiosis)

chromosome-wide gene regulation and recombinational repair

novel type of protein machine : function as dynamic linkers of the genome

large- 1000-1300 aa monomers fold back on themselves (antiparallel coiled-coil) exist as dimers

nucleotide binding sites at N and C termini

different SMCs in complexes associated with different functions each contains non-SMC proteins, associated with heads regulate catalytic activity and interactions

ATP binding drives head associations associations required for ATP hydrolysis ATP hydrolysis required for disengaging heads

hinge associations strong, independent of ATP

many types of possible intra- and inter- molecular interactions can form different higher order complexes and structures

intermolecular interactions require DNA?

Structures observed in vitro by EM

different for condensin and cohesin

Condensin

two complexes: Condensin I and II

both have SMC 2 and 4 different non-SMC components

> bind DNA cooperatively, not ATP dependent

could also involve the stalk

Condensin I + ATP drives positive superhelical tension on DNA

Speculative model for chromosome condensation by Condensin

acts on chromatin, not DNA roles of non-SMC subunits?

Cohesin

holds sister chromatids together through metaphase INTERmolecular linking of two DNAs (compare to condensin) established at replication fork-preloaded in G1? degraded at onset of anaphase to allow sister separation cohesin in pericentromeric regions recruited by HP1/K9me, may be regulated differently

Ring model for Cohesin

Centromeres and Kinetochores

chromosome

there can only be one.....

chromatid

Centromeric DNA sequences are not conserved

S. cerevisiae and other budding yeast

same specific, 125 bp sequence present at all 16 centromeres necessary and sufficient for kinetochore formation

everywhere else, often repetitive, 10s-1000s of kb.....but.... sequences associated with centromeres are not conserved across species, or even among different chromosomes in the same organism

Centromere Identity and Propagation are Epigenetically Regulated

Centromere Plasticity

Epigenetic Model for CEN Identity

primary sequence is not sufficient (dicentrics)

non-centromeric sequence can acquire and propagate centromere function (neocentromeres)

CEN Evolution: Hopping

in terms of individual cell cycles, cerevisiae sequence specificity makes the most sense

Centromere Plasticity Necessary for Chromosome Evolution ?

