Lecture 4

Structure and Function of Actin & Myosin

Outline:

Actin Structure and Regulation

Myosin Structure and Regulation

Functions of Actin and Myosin in Cells

Paper: Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts

Stationary cell - stress fibers

Platelet Dynamics

Dramatic morphological changes result from reorganization of actin cross-linked to plasma membrane

Actin

highly conserved 375 aa, 43 kD protein

the most abundant protein in non-muscle cells : 1-5%

roles: cell shape, polarization, locomotion, division; vesicle traffic

```
monomer = G-actin
```

polymer = F-actin, microfilaments

inhibitors: latrunculin, cytochalasin; phalloidin

Actin Structure

pointed

Steady state actin polymer-Treadmilling of subunits

Cc(- end) = 0.8 μM > Cc(+ end) = 0.1 μM

filament turnover rate: $t_{1/2} = 30$ min

rate limiting step = dissociation of ADP actin from minus end

Actin dynamics in vivo

Parameters:

1. Spatial and temporal control of polymerization/ depolymerization

- 2. Turnover
- 3. Movement of actin filaments myosins

Model systems:

- 1. Fibroblast
- 2. Keratocyte epithelial cell
- 3. Listeria monocytogenes intracellular bacterial pathogen

- 1. monomer pool
- 2. nucleation
- 3. elongation
- 4. depolymerization

Regulation of the monomer pool

Thymosin β4

M.W. 5000 binds 1:1 - enough to buffer all the actin sequesters actin from polymerizing localization - diffuse

Profilin

M.W. 14,000 binds 1:1 - can buffer 20% of actin promotes nucleototide exchange and polymerization binds PIP2 and proline-rich sequences localization - diffuse and leading edge, Listeria surface

Nucleation

Arp2/3 complex (Actin Related Protein) 7 subunits, include actin-related proteins 2 and 3 accelerates actin polymerization (with activator, eliminates lag phase) binds (-) ends and filament sides - branching function

promotes actin polymerization at listeria surface

Activators: Listeria: Act A cells: WASP family proteins

immuno-EM of Arp2/3 at actin branch points

Profilin promotes (+) end growth

Capping factors: CapZ (Capping protein) - (+) end tropomodulin - (-) end gelsolin - (+) end

can stabilize or destabilize filaments, prevent elongation

Depolymerization

gelsolin M.W. 87,000 Ca⁺⁺-dependent severing

ADF/cofilin

M.W. 19,000 binds G- and F-actin accelerates (-) end depolymerization 25-fold

thymosin β4, profilin

- 1. monomer pool
- 2. nucleation
- 3. elongation
- 4. depolymerization

Myosin - the most studied of all proteins (!?)

large family of myosin-related proteins ~14 in human

common features:

one or two heavy chains and several light chains

heavy chain:

- 1) large globular head: contains actin-binding and ATPase domains
- 2) α -helical neck region binds light chains
- 3) tail domain for oligomerization or cargo binding

light chains:

- 1) calcium-binding proteins, sometimes calmodulin
- 2) regulate myosin activity

Myosin II

Myosin thick filaments: bipolar

Myosin motility assay

1) Adsorb myosin molecules on glass coverslip in chamber

2) Perfuse in labeled actin filaments and plus ends (and ATP)

3) Observe by fluorescence video microscopy

other myosins can move toward the minus end muscle myosin plus end motor ~4.5 µm/sec

Myosin II mechanism

ATPase activity stimulated by actin: from 4/hour to 20/second

ATP binding, hydrolysis and dissociation of ADP-Pi produce a series of allosteric changes in myosin conformation

Energy release is coupled to movement

Myosin II crystal structure (S1 fragment)

neck domain = lever arm

superimpose structures in two different nucleotide states

ATP (2)ADP•P 3 ADP•Pi. Power stroke 6 ADP ADP Pi

cross bridge cycle

cross bridge cycle

Myosin mediated movement: in reality more complexly regulated

(a) Myosin binding sites blocked; muscle cannot contract

(b) Myosin binding sites exposed; muscle can contract

C1999 Addison Wesley Longman, Inc.

troponin tropomyosin

Calcium binds Troponin

Troponin movement exposes binding site for Myosin head.

Magnesium ion approaches Myosin head.

Myosin head binds Actin filament. Magnesium activates Myosin head, releases Phosphorus from ATP, leaves ADP causes Myosin head to contract.

Magnesium and ADP released from Myosin head ends contraction.

Myosin head releases from Actin filament. Calcium ion released from Troponin, covers binding site

New calcium ion approaches next Troponin molecule New ATP molecule approaches Myosin head beginning the process over again

Functions of Actin and Myosin in Cells

Functions of Actin and Myosin in Cells

Cell Motility Cell Division Muscle Contraction Pathogen Motility and Infection Cell Protrusions/microvilli Cell Cortex Stress Fibers

relaxed

Muscle Contraction

Cell Division / Cytokinesis

Dictyostelium amoeba

Cell Motility

Swimming Microtubule-based – cilia, flagella

purposes: wound healing - epidermal cells immune response - leukocytes –migrate to sites of infection development – neural crest cells; neuronal process extension cancer cell metastasis –malignancy determinant

locomoting cell - filopodia and lamellipodia

Fish Keratocytes vs. Fibroblasts

Two types of crawling motion

Actin Dynamics in Moving Keratocytes

00:00 actin polymerization at leading edge, treadmill to the rear

Actin polymerization required for movement

latrunculin-inhibits actin polymerization

Latrunculin-treated Keratocytes

Actin in Latrunculin-treated Keratocytes

Crawling: Coordination of 4 processes

protrusion

Actin polymerization at leading edge - local force

mechanisms:

1) "thermal rachet" - actin polymerization pushes

2) myosin I - movement of actin filaments

1) thermal rachet - actin polmerization at leading membrane, depolymerization at the rear

2) myosin I - dependent

myosin I could also transport assembly factors to membrane

anchorage

Adhesion plaques:

connect cell to substratum prevent leading lamella from retracting

forward movement

Observations:

actin networks stationary with respect to substratum cell body and nucleus rotates myosin II required

Proposed mechanisms:

sarcomere-like contractions in rear
transport along actin arrays

crawling Dictyostelium amoeba

MyosinII (Rhodamine) in Moving Keratocytes

tail retraction

passive - cell snaps loose from adhesion plaques

Co-opts Actin for devious purposes....

Listeria movement

Listeria invasions

'comet tails' formed by actin polymerization

what controls depolymerization in Listeria tails?

Listeria + cytoplasmic egg extract leads to motility in vitro

immunodeplete gelsolin or ADF/cofilin and observe effects

control

Important Breakthrough: reconstitution of Listeria motility from purified components

required:

Actin and ATP Arp2/3 complex ADF/cofilin Capping protein

stimulators:

VASP -binds ActA, actin, profilin Profilin α-actinin

has helped us understand 'normal' cell mechanisms involving actin

Next Week: Chromosomes and the Cell Cycle

Shiv Grewal - 4PM Heterochromatin in Pombe