Lecture 3

Microtubule Structure, Organizers, and Motors

Outline: Microtubule Structure

Microtubule Organizers

Microtubule Motors

Microtubules

Roles:

cell organization, vesicle traffic, chromosome segregation

Subunit: tubulin highly conserved heterodimer of α/β subunits, 50 kD each

both subunits bind GTP \Rightarrow α non-exchangeable; β exchangeable

10-15 linear protofilaments form microtubule

cryo-EM of pure microtubules

MT in cells: 13 protofilaments (10-15) 25 nm diameter Tubulin organization in a microtubule

dimers arranged head-to-tail in protofilaments -polarized structure

protofilaments associate laterally to form microtubules

(+) end = faster growing end

(-) end often embedded in microtubule-organizing center

Possible lattice structures

How to distinguish? decoration by motor protein that binds β-tubulin

Structure solved by electron crystallography - Eva Nogales

docking of crystal structure onto microtubule

what generates dynamic behavior?

β-tubulin GTP hydrolyzed soon after polymerization

curved protofilaments \Rightarrow GDP-tubulin exposed

(a) Elongation

straight protofilaments \Rightarrow GTP-tubulin in cap

Parameters of MT dynamics: (+) end

	in vitro	in vivo
critical concentration	15 µM tubulin	∼15 µM tubulin
growth rate	1.5 µm/min	8-15 µm/min
shrinkage rate	30 µm/min	15-30 µm/min
catastrophe frequency	0.06/min	0.5-8/min
rescue frequency	3/min	0.5-2.5/min
turnover rate	t _{1/2} = 30 min	t _{1/2} = 0.5-20 min

Conclusions

Microtubules in vivo: much higher growth rate

many more catastrophes

Dynamic parameters of MTs in vivo are quite variable

Microtubule Nucleation in vivo

15 μ M not high enough for "spontaneous assembly" \Rightarrow always "seeded"

general term: microtubule organizing center "MTOC" most cells: centrosome

defined orientation: microtubules (-) ends tethered, (+) ends extend outward

MTs in interphase cell by immunofluorescence

Depolymerize MTs, then allow to regrow

centrosome consists of: centriole pair: similar to basal body of flagellum surrounded by pericentriolar material = "PCM"

duplicating centrosome

9 triplet microtubules

(a) Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Centrioles go for a stroll

GFP-tag centriolar protein: daughter centriole mobile!

Piel et al., JCB 149, 317 (2000)

Centrosomal Proteins

70 by proteomic analysis, roles? microtubule nucleation centrosome duplication cell cycle regulation

γ-tubulin: nucleating factor

highly conserved tubulin isoform: 30% similarity also found soluble in cytoplasm required for microtubule nucleation

purified from Xenopus egg extracts complex with ~7 other subunits forms rings! called γ-tubulin ring complex (γ-TuRC)

purified γ-TuRCs

MTs nucleated by γ-TuRCs in vitro

12-14 γ-tubulin molecules/ring

Model for nucleation by y-TuRCs

Not all nucleation centers have centrioles

plant MTOC

Not all nucleation centers have centrioles

RAN GAP and chromosomes many meiotic cells acentriolar-MT bundling by motors

will discuss when talking about chromosomes next week

Microtubule Stability Regulators in vivo

Stabilizing:

Microtubule-associated proteins (MAPs) lattice-binding ⇒ stabilizing end-binding ⇒ attachment to targets

Destabilizing:

Catastrophe-promoting factors: Stathmin/Op18 Kinl kinesins

Severing factors: Katanin

Lattice-binding (textbook) MAPs

TABLE 19-1 Major Microtubule-Associated Proteins			
Protein	MW	Domain Organization*	Location
Type I MAP1A	300,000 heavy chain		Dendrites and axons
MAP1B	255,000		Dendrites and axons
Type II MAP2a	280,000		Dendrites
MAP2b	200,000		Dendrites
MAP2c	42,000		Embryonic dendrites
MAP4	210,000		Non-neuronal cells
Tau	55,000-62,000		Dendrites and axons

*Yellow, microtubule-binding domain; pink, projection domain; green, 18 amino acid repeats.

co-purify with microtubules

MAP binding regulated by phosphorylation

Green - phospho-tau Red - MAP4

Express brain MAPs in non-neuronal cells - processes form

MAP2 tau MT spacing determined by size of projection domain

End-binding MAPs

CLIP-170 EB-1

Associate with growing (+) ends of microtubules

Associate with other proteins on cellular targets: cell cortex, kinetochore

Plus end treadmilling of End-binding MAP:

Microtubule-destabilizing proteins

Stathmin/Op18:

may sequester tubulin dimers promotes GTP hydrolysis

binds to two tubulin dimers:

Steinmetz et al. EMBO J 19, 572 (2000)

Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 2005 123:697-709.

Kinesin 13 family

Peels protofilaments at both plus and minus ends

Severing factors

Katanin

AAA ATPase family subunits form ring localizes to centrosome

Microtubule-based Motor Proteins

Dyneins:

axonemal - flagellar motor cytoplasmic - vesicle traffic, mitosis, morphogenesis one major isoform - multiple functions

Kinesins: multiple isoforms - separable functions: vesicle traffic, mitosis, morphogenesis 10 major subfamilies

> motor functions: move cargo along microtubule move microtubules

axon MTs

Cytoplasmic Dynein

500 kD heavy chain - AAA ATPase: multiple ATP and MT binding sites, intermediate and light chains

Minus end-directed

activating complex required to interact with cargoes = dynactin complex

Dynein/dynactin attaching to vesicle

Overexpression of dynactin subunit disrupts Golgi localization

expressed protein

p50 dynamitin

transfected cells

Golgi marker

<mark>β-gal</mark>

Burkhardt et al., JCB 139, 469 (1997)

Kinesin

First isoform called "conventional" kinesin (+) end-directed purified from squid giant axon assay : microtubule gliding

Kinesins are plus end motors in vitro

DIRROEDOLS

ISE LUPPERAL

Kinesins are plus end motors in vivo

Kinesins are plus end motors in vivo

Kinesin-GFP Moving on Axonemes

kinesin

in vitro made kinesin

ATP hydrolysis cycle \Rightarrow conformational change cycle

kinesin-MTs

lots of steps, then dissociate (processive)

two heads highly coordinated

force mechanism: neck linker

Model for bi-directional transport of vesicles

Another model system: yeast spindle pole body

busy life of an individual microtubule at ~steady state [tubulin] ~ 14 µM

chick neuronal process (axon) growth cone

cell body

Flagellar dynein structure and power stroke

Nature 421, 715 (2003)