DISCUSSION SECTIONS BY STUDENT NUMBER ENDING IN ODD NUMBERS 2-3, EVEN 3-4

Methods for Studying the Cell Cycle cell fusion live and fixed imaging

genetics biochemistry in vitro systems

inhibitors of cellular processes (transcription, replication, microtubules)

Genetic Screens: Yeast 'Cell Division Cycle' (CDC) Mutants

'Dominos' sequential, dependent events

'Oscillator' central controller

can individual protein mutations block steps or whole process ?

From The Art of MBoC³ © 1995 Garland Publishing, Inc.

Genetic Screens: Yeast 'Cell Division Cycle' (CDC) Mutants

- Lee Hartwell (cerevisiae); Paul Nurse (pombe)
- Goal: find mutants unable to transit the cell cycle
- Why yeast?
 - Cell shape --> cell cycle stage
 - Grow as haploids (easier to find mutants), or diploids (can do genetics)
- Problem:
 - the screen is for cells that can't grow
- Solution:
 - temperature sensitive mutants
 - Replica plating

use to isolate proteins present at particular stages manipulate proteins-deplete and observe changes to cell cycle

Lecture 2

Introduction to the Cytoskeleton

Outline: Composition of the cytoskeleton Polymer Dynamics in theory Polymer Dynamics in cells

Paper: Identification of pathways regulating cell size and cell-cycle progression by RNAi Paul Nurse "Controlling the Cell Cycle" !!! Thu 4 PM, 100 GPBB

Roles of the Cytoskeleton

Structural scaffold - cell shape, spatial organization

Dynamic assemblies - movement and force production:

cell migration cell division intracellular traffic contraction

cytoskeletal functions often involve motor proteins

3 major elements of the cytoskeleton

microtubules

- α/β tubulin dimers
- 25 nm diameter

relatively stiff – hollow, 13 protofilaments

3 major elements of the cytoskeleton

microfilaments = actin filaments actin monomers 7 nm diameter more flexible – 2 helicies

3 major elements of the cytoskeleton

intermediate filaments

10 nm diameter

fibrous – resistant to shear forces

structural – prominent in cells subject to mechanical stress

vimentin, nuclear lamins

Introduction to polymer dynamics: 3 cases

1) simple equilibrium polymers

2) polar polymers: asymmetric subunits undergo conformational change during assembly actin and

3) complex polymers: non-equilibrium

subunit nucleotide hydrolysis (energy input)

microtubules

Simple Equilibrium Polymer

assembles & disassembles by addition & loss of subunits at ends

rates = K_{on} and K_{off}

K_{on} depends on concentration of subunit, units of M⁻¹sec⁻¹

K_{off} does not (unimolecular), units of sec⁻¹

Polymer assembly timecourse

- 1) lag due to kinetic barrier to nucleation
 2) growth
- 3) equilibrium

polymer grows as time proceeds subunit concentration drops until $K_{on}[C] = K_{off}$ [C] = critical concentration Cc (M⁻¹sec⁻¹[M] = sec ⁻¹)

Critical Concentration

Concentration of free subunits at which rate of subunit addition = rate of loss

Above Cc net growth, below net shrinkage

Equilibrium constant K_{eq} determined by change in free energy between free subunits and polymer

 $K_{eq} = K_{on}/K_{off} = 1/Cc$

Polar Polymer

Two ends polymerize and depolymerize at different rates BECAUSE

subunit conformation changes as it incorporates into the polymer

Plus and minus ends different K_{on} and K_{off}

 K_{off} / K_{on} ratio or Cc must be the same for both ends:

BUT!

> the same interactions are broken when a subunit dissociates from either end

> the final state of the subunit is identical

If the plus end grows 3 times faster it must also shrink 3 times faster. above Cc both ends grow, below Cc, both shrink

Complex Polymer (non-equilibrium): microtubules, actin filaments

due to nucleotide hydrolysis upon assembly of subunit into polymer

nucleotide hydrolysis reduces binding affinity

Complex Polymer properties

internal subunits have different dynamic properties than the ends

T form binds, D form dissociates

Css = "steady state" concentration K_{Ton}[C] = K_{Doff} Css = K_{Doff} / K_{Ton} **Steady State Dynamics**

no longer true equilibrium, rather steady state because ATP or GTP subunits must be replenished

D=diphosphate

T=triphosphate

Consequences for polymer dynamics treadmilling (actin and microtubules)

two different reactions at each end of the polymer

critical concentration different Cc(- end) > Cc(+ end) Treadmilling

both ends exposed Steady state occurs at concentration between Cc(- end) and Cc(+ end)

> net assembly at the plus end net disassembly at the minus end

subunits "flux" through the polymer

Treadmilling

Dynamic instability (microtubules)

subunit addition is faster than nucleotide hydrolysis

CAP of GTP-tubulin on polymer ends K_{Doff} >> K_{Toff} : GTP CAP favors growth

GTP CAP present: growth GTP CAP lost: rapid disassembly

stochastic (unpredictable) transitions

frequency correlates with tubulin concentration

Classic experiments by Mitchison and Kirschner 1984

1) determine steady state concentration (Css) = 14 μ M

2) dilution experime	ent:		
grow microtubule s	eeds		
dilute into tubulin s wait 10 minutes	olution abov	e or below	Css
measure Mt numbe	r-concentrati	ion, Mt leng	gth
(spun onto EM grids	s		
	#concentration:		x10 ⁸ /ml
bet	fore dilution	15 uM	7.5 uM
average length: (µM)	32	32	15
	18	40	22

size is dependent on the concentration of tubulin

Dynamic instability in vitro

Microtubules are really.... tubes, not simple polymers

MIDDLE BREAKS 5 LONGITUDINAL BONDS

BREAKAGE IN

MULTIPLE PROTOFILAMENTS: THERMALLY STABLE

Summary

simple equilibrium: exchange only at the ends turnover only with dramatic changes in subunit concentration

non-equilibrium:

Dynamic instability

Treadmilling

complete and rapid polymer turnover at steady state energy required

Polymer properties regulated in cells

nucleation
 polarity
 dynamics

1) Nucleation: kinetic barrier - slow step

trimer for actin

Time

Nucleating factors in cells

Microtubules: centrosomes

Actin: protein complexes (Arp2/3)

2) Polarity: due to asymmetry of subunits

structural polarity of polymer lattice

visualized by decoration of actin filaments and microtubules

allows cell to generate asymmetric structures and shapes basis of motility

Actin lattice polarity revealed

Actin decorated with myosin subfragment 1

actin structural and dynamic polarity revealed

Microtubule lattice polarity revealed by hook direction

Microtubules decorated and viewed in cross section

microtubule dynamic polarity revealed

Motor proteins recognize polymer asymmetry

mechanochemical enzymes hydrolyze ATP to move along filament produce force or carry cargo

polarity generates directionality

more on motors in later lectures ...

3) dynamics

regulated by many cellular factors

end-capping subunit sequestering polymer binding proteins

regulators also regulated

MT dynamics in pombe

role in nuclear positioning and deformation

FP-tubulin p107-GFP	s intervals in total time	X realtime.
누 날	s ∈	~
0 5	9 ¹ 2	60

movement of kinesin motors on growing and shrinking MTs

MT dynamics in vertebrate cells

impact of destabilization of actin

Dynamic Instability

