Lecture 10 G1/S Regulation and Cell Cycle Checkpoints

Outline:

G1/S regulation and growth controlG2 repair checkpointSpindle assembly or mitotic checkpoint

Paper: The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time

G1/S is the major control point: in budding yeast in mammalian tissue culture cells

regulated by:

cell growth nutrient availability signals from other cells

Budding Yeast G1/S Regulation Cdk1 = CDC28 = cdc2

cdc28 mutations - arrest with no bud

analogous to MPF: SPF = S-phase Promoting Factor Cdc28/cyclin heterodimer

how to identify cyclin partner?

look for high copy suppressors of cdc28^{ts} mutations

Cdc28^{ts} Ψ Colonies form Arrested in G₁

CLN1, CLN2, CLN3 genes identified

homology to mitotic cyclins ("cyclin box") one CLN gene sufficient, triple knockout lethal CIn necessary and sufficient to induce passage through start

Sic1-CDK inhibitor

Induced by Cdc14 phosphatase during exit from mitosis inhibits MPF/ -type cyclins, promtes exit from mitosis

Binds and inhibits S-phase Clb-Cdc28 complexes Clb 5 and 6- S phase cyclins no effect on G1 Cln-Cdc28 complexes

Sic1 degradation causes S-phase onset recognized by ubiquitination machinery when phosphorylated by G1 Cln-Cdc28 Two Roles for Sic1-CDK inhibitor promotes one transition: induces exit from M-phase by inhibiting B-type cyclins inhibits another transition: provides barrier to S-phase that must be overcome

Something other than APC must degrade Sic1 in S

SCF = Skp1-cullen-F-box-protein complex

Ubiquitin E3 ligase-analogous to APC

SCF Structure and Targets

Skp2 provides specificity for substrate

not just for cell cycle regulation, also signal transduction

C. Their target substrates

E2F-1: Cell-cycle regulator p27^{Kip1}: Cell-cycle regulator

F β-TRCP

 β -catenin: Cell-proliferation regulator I κ B α : NF- κ B signaling regulator

Notch: Cell-fate decisions regulator

What generates specificity?

APC Accessory factors:

Cdc20 kinase?: Clb3, Clb5, Pds1

Cdh1 kinase?: Clb1, Clb2, Clb3 SCF F-box proteins:

Cdc4 kinase: Sic1

Grr1 kinase: Cln1, Cln2

model for progression through G1/S

Cdc28-Cln3 induced at proper cell size

phosphorylates and activates

transcription factors, CLN1 and CLN2, and DNA replication enzymes late G1 - CLB5 and CLB6

APC phosphorylated and inactivated

Clb5 and Clb6 (S-phase cyclins)

Cdc28-Clb5, Cdc28-Clb6 immediately inactivated by Sic 1

mitotic exit and G1 progression in budding yeast

M-Cdk inactivation by Sic1 and APC

G1-Cdk activity increases - not susceptible to Sic1

S Cyclin synthesis induced

S-Cdk inactive until phosphorylation of Sic1 and Cdh1 by G1/S-Cdks Sic1 degraded by SCF

active S-Cdk initiates DNA replication

Possible mechanism to coordinate cell growth

and cell cycle progression

Cln3 synthesized in parallel with cell growth How is threshold level reached? Cells inherit fixed amount of inhibitor (DNA?) **Cell cycle control in mammalian cells**

quiescent cells in G₀ phase

"mitogens" required to stimulate proliferation = growth factors (in serum)

multiple Cdksmany cloned on the basis of
their ability to complementmultiple Cyclinsyeast mutations

Phase	Cdk	Cyclin
G1	Cdk4, Cdk6	D Cyclins
G1-S	Cdk2	Cyclin E
S	Cdk2	Cyclin A
G2/M	Cdk1	B Cyclins

initiation of DNA synthesis blocked by antibody

What happens downstream of growth factors?

early: Fos, Jun

delayed: E2F, D Cyclins, Cyclin E, Cdk2, 4, 6

early genes induce transcription of delayed genes

transcription factors activated post-translationally

Regulation of E2F transcription factors

E2Fs induce: themselves Cdk2 Cyclin E, Cyclin A

E2F Inhibited by retinoblastoma protein (Rb), p107, p130

Rb inhibited by phosphorylation target of Cdk4,6-Cyclin D E2F and Rb are tumor suppressors

positive feedback loop

Rb phosphorylation maintained until Cyclin B destruction

Cdk2-Cyclin A

Required to progress through S phase

Required for Cyclin B accumulation

phosphorylates and inactivates Cdh1 blocks cyclin B degradation by proteosome

E2F → Cyclin A → Cdh1 → Cyclin B

Control of G1 progression in mammalian cells

G1-Cdk induced by growth factor, phosphorylates Rb E2F induces more of itself, and S phase Cyclins (E, A) S-Cdks further phosphorylate Rb more S-Cdks accumulate - DNA replication

CC Regulation is VERY Complex

really a bit simpler... yeast

Cyclins are regulated by proteolysis

many cyclins, one CDK

Cyclin Expression in Budding Yeast

Sense cell size Cln3 **G1 Commit to division** Cln1, Cln2 Clb5, Clb6 **Activate replication origins** S Clb4, Clb3 Spindle assembly, Μ Clb1, Clb2 anaphase

What generates Cdk/cyclin substrate specificity?

how are diverse events induced?

Cdk subunit?

only slight differences in substrate specificity both Cdk1 and Cdk2 can rescue cdc28 mutations

Cyclin subunit?

some mediate interaction with substrates Cyclin D-Rb

different affinity for inhibitors

But: a single Cyclin can allow fission yeast to grow normally

Cell Cycle Checkpoints

Early Evidence for a DNA Damage / Defective Replication Checkpoint

tissue culture cells - 1974

DNA damage causes arrest in S

caffeine blocks arrest and allows abnormal entry into mitosis

How to identify genes involved in checkpoint function?

Identify mutants that cannot recover from DNA damage

2 classes: repair deficient arrest deficient WILD-TYPE YEAST, NO IRRADIATION

Viable cells

WILD-TYPE YEAST

Conserved elements of DNA damage and replication checkpoints

Sensors Proteins with functional analogs in DNA replication

recognize damage load onto DNA

II. Transducers: = kinases ATM and ATR (inhibited by caffeine)

Chk1 and Chk2

phosphorylate substrates affecting protein activity or stability

III. Effector output:

cell cycle arrest activate DNA repair maintain arrest until repair complete re-initiate cell cycle progression or APOPTOSIS Examples of pathways that block the cell cycle: DNA damage pathway in budding yeast

Another feedback pathway in fission yeast: DNA damage results in G2 arrest

Mechanism: Sequester Cdc25 away from Cdc2

DNA damage Cdc25 phosphorylated by Chk1 P-Cdc25 recognized by Rad24 14,3,3 protein with NES Rad24 transports P-Cdc25 out of nucleus

Cdc25 cannot dephosphorylate nuclear Cdc2

translocation has not been confirmed in other organisms

Higher Eukaryotes: G1 arrest mediated by p53 p53 = tumor suppressor/transcription factor: stabilized in damaged cells

induces expression of Cdk inhibitor p21^{CIP}

Cyclin E inhibition and Cyclin D degradation by APC apoptosis

Also a faster response recently identified, independent of p53

Spindle / Mitotic Checkpoints

Kinetochore-mediated

senses when all chromosomes have been attached and properly aligned

regulates sister separation

cross-talk

MTOC-mediated

senses proper spindle position regulates exit from mitosis

Budding yeast

mutants that fail to arrest in the presence of microtubule depolymerizing drugs

Hoyt lab bub: Bub1, Bub2, Bub3 budding uninhibited by benomyl

Murray lab mad: mitotic arrest deficient

Mad1, Mad2, Mad3

highly conserved

Kinetochore checkpoint

activator of APC-mediated destruction of Pds1(securin), B Cyclins

activates chromosome segregation

focus on Mad2

associates only with unattached kinetochores inhibits Cdc20-APC mouse knockout embryonic lethal

Model unattached kinetochores "activate" Mad2 Mad2* diffuses away and inhibits Cdc20-APC

FRAP experiment: Mad2 turns over rapidly

Prebleach Postbleach Half Recovery

Kinetochore (Untreated)

MT destabilization: more kinetochores with MAD2, still turnover

Questions

What activates/inactivates Mad2? binding partners: Mad1, Mad3, BubR1, Bub3?

What is Mad2*

complex? oligomer?

What generates and stops the signal???somatic cells - MT attachmentHowmeiotic cells - tensiontransduced??

dynein-dependent transport to spindle poles may turn it off

Different checkpoint proteins in higher eukaryotes

No Bub2 Mad3 homolog = BubR1, acquired kinase domain CENP-E ZW10/Rod (dynein interactors)

All behave like Mad2:

associate with unattached kinetochores required for checkpoint signaling

Dynamitin (dynein inhibitor) induces arrest

inhibition of Dynein-fails to turn off signal

Dynamitin then Mad 2

addition of Mad2 overcomes block, enters anaphase

Motor-dependent mechanism for checkpoint signaling?

CHECKPOINT ACTIVATED

CHECKPOINT SILENCED

CENP-E activates BubR1 kinase activity until attached to microtubules - creates "wait" signal

After attachment, complexes are carried off the kinetochore by dynein

Mao, Desai and Cleveland, JCB 170, 873-80 (2005)

Cell Cycle Checkpoints

