Administrative issues:

Recommended text: Goldsby/Kuby Immunology, 6th edition (Note that Innate Immunity is not adequately covered in the 5th edition.)

Text book reading assignments are to supplement the lecture. Exam questions will be drawn primarily from lecture material.

Discussion sections start next week. The journal article Akira et al, and the relevant problem set questions will be covered. Both are available on the website.

Office Hours: Questions about the lecture material are best addressed during office hours (Tues 11-12). I will be holding extra office hours (date and time TBA) before the first midterm.

 $\mbox{Email: Please use email only for VERY simple yes/no questions or simple administrative matters.$

Great questions, keep them coming!

Antigens & Antibodies I

Discovery of antibodies

Basic Antibody Structure brief review of protein structure disulfide linked tetramer: 2 heavy and 2 light chains myeloma proteins, Ig domains, and hypervariable regions

The antigen binding site of antibodies

Antibody isotypes: IgM, IgG, IgD, IgA, IgE The advantages of multivalency effector functions of antibody isotypes

Myeloma protein: key to determining Ig structure

- Heterogeneity of antibodies makes sequencing impossible (each B cell clone produces a unique version of antibody).
- Multiple myeloma: cancer derived from an antibody producing cells (plasma B cell).
- Myeloma patients have large amounts of one particular Ig molecule in their serum (and urine)
- Many patients produce a large amount of one light chain, known as "Bence-Jones" proteins.

Table 25 Th	ne most po Hun	opulous I nan	InterPro f	amilies i	n the hum Wo	nan prote	ome and Yea	other sp	ecies Mustard	d weed	
InterPro ID	No. of genes	Rank	No. of genes	, Rank	No. of genes	Rank	No. of genes	Rank	No. of genes	Rank	
PR003006 PR000822 PR00719 PR00719 PR00276 PR001687	765 706 575 569 433	(1) (2) (3) (4) (5)	140 367 319 97 198	(9) (1) (2) (14) (4)	64 151 437 358 183	(34) (10) (2) (3) (7)	0 48 121 0 97	(na) (7) (1) (na) (2)	0 115 1049 16 331	(na) (20) (1) (84) (5)	Immungdobulin domanin C2H2 zins tinger Eukaryotis protein kirage Filvadopain-kike GPCR superfamil P-loop motif

HV2 (CDR2)

> antigenbinding

HV3^{FR4}

nobiology, 6/e. (© Garland Science 2005

Figure 3-7 Imm

The intervening framework regions (FR1-4) make up the rest of the structure.

Antigens & Antibodies I

Discovery of antibodies

Basic Antibody Structure brief review of protein structure disulfide linked tetramer: 2 heavy and 2 light chains myeloma proteins. Ig domains and hypervariable regions

The antigen binding site of antibodies

Antibody isotypes: IgM, IgG, IgD, IgA, IgE The advantages of multivalency effector functions of antibody isotypes Antigen-antibody interactions regions come in many shapes including: pockets, grooves, or extended flat surfaces.

Epitope and antigen binding site form complementary surfaces

Ig **isotypes** are due to differences in heavychain or light-chain constant region sequences.

Heavy chains come in 5 major types that have different tissue distributions and effector functions : γ , μ , δ , α , ϵ Light chains come in two major types: κ or λ

TABLE	4-1	Chain compos immunoglobu	sition of Ilin class	the five ses in humans
Class	Heavy chain	Subclasses	Light chain	Molecular formula
IgG	γ	γ1, γ2, γ3, γ4	κ or λ	$\gamma_2 \kappa_2$ $\gamma_2 \lambda_2$
lgM	μ	None	κ or λ	$(\mu_2 \kappa_2)_n$ $(\mu_2 \lambda_2)_n$ n = 1 or 5
IgA	α	α1, α2	κ or λ	$\left(\begin{array}{c} \left(lpha_{2}\kappa_{2} \right)_{n} \\ \left(lpha_{2}\lambda_{2} \right)_{n} \\ n = 1, 2, 3, \mathrm{or} 4 \end{array} \right)$
IgE	e	None	κ or λ	$\epsilon_2 \kappa_2 \\ \epsilon_2 \lambda_2$
IgD	δ	None	κ or λ	$\delta_2 \kappa_2 \\ \delta_2 \lambda_2$

Antigens & Antibodies I

Discovery of antibodies

Basic Antibody Structure

brief review of protein structure disulfide linked tetramer: 2 heavy and 2 light chains myeloma proteins and the primary structure of antibody crystal structure of antibody: the Ig domain

The antigen binding site of antibodies

Antibody isotypes: IgM, IgG, IgD, IgA, IgE differences in valency and tissue distribution effector functions of antibody isotypes

	lgG1	lgG2	lgG3	lgG4	lgA 1	lgA2	lgM‡	IgE	lgD
Molecular weight [†]	150,000	150,000	150,000	150,000	150,000 - 600,000	150,000 - 600,000	900,000	190,000	150,000
Heavy-chain component	γ1	γ2	γ3	γ4	α1	α2	μ	e	δ
Normal serum evel (mg/ml)	9	3	1	0.5	3.0	0.5	1.5	0.0003	0.03
n vivo serum half-life (days)	23	23	8	23	6	6	5	2.5	3
Activates classical complement pathway	+	+/-	++	-	-	-	++	-	-
Crosses placenta	+	+/-	+	+	-	-	-	-	-
Present on membrane of mature B cells	-	-	-	-	-	-	+	-	+
Binds to Fc receptors of phagocytes	++	+/-	++	+	-	-	?	-	-
Mucosal transport	-	-	-	-	++	++	+	-	-
nduces mast cell degranulation	-	-	-	-	-	-	-	+	-
Activity levels indicat ¹ IgG, IgE, and IgD alwa monomer, but secrete	ed as follows ys exist as m ed IgM in serve	s: ++ = high; onomers; IgA um is a penta	+ = moderat can exist as a mer. e and during a	te; +/- = min monomer, dir	imal; — = none; ner, trimer, or te une response.	? = questional tramer. Membr	ble. ane-bound l <u>c</u>	ıM is a	

IgG

- Predominant Ig in serum.
- 4 subclasses (IgG1-IgG4)
- Important for opsonization, complement activation, ADCC,
- Crosses placenta to protect fetus

IgM

- pentameric (decavalent)
- Pentameric structure held together by Jchain and disulfide bonds.
- First Ig produced in response to infection
- Good at complement activation

IgA

- dimeric (tetravalent) predominant Ig in secretions.
- Transported across epithelial cells via poly-Ig receptor.
- 10g of IgA secreted/day, more than any other Ig!
- Found in breast milk, supplies passive immunity to baby.

Antibodies of secretory IgA class	Bind to microbes in baby's digestive tract and thereby prevent their attachment to the walls of the gut and th subsequent passage into the body's tissues.
B ₁₂ binding protein	Reduces amount of vitamin B ₁₂ , which bacteria need in order to grow.
Bifidus factor	Promotes growth of Lactobacillus bifidus, a harmless bacterium, in baby's gut. Growth of such nonpathogeni bacteria helps to crowd out dangerous varieties.
Fatty acids	Disrupt membranes surrounding certain viruses and destroy them.
Fibronectin	Increases antimicrobial activity of macrophages; helps to repair tissues that have been damaged by immune reactions in baby's gut.
Hormones and growth factors	Stimulate baby's digestive tract to mature more quickly. Once the initially "leaky" membranes lining the gut mature, infants become less vulnerable to microorganisms.
Interferon (IFN-γ)	Enhances antimicrobial activity of immune cells.
Lactoferrin	Binds to iron, a mineral many bacteria need to survive. By reducing the available amount of iron, lactoferrin thwarts growth of pathogenic bacteria.
Lysozyme	Kills bacteria by disrupting their cell walls.
Mucins	Adhere to bacteria and viruses, thus keeping such microorganisms from attaching to mucosal surfaces.
Oligosaccharides	Bind to microorganisms and bar them from attaching to mucosal surfaces.
SOURCE: Adapted from	n I. Newman, 1995. How breast milk protects newborns. Sci. Am. 273(6):76.

• Can transfer allergy between individuals

Antigens & Antibodies II

Definitions

A comparison of antigen recognition by B and T cells

Factors that determine immunogenicity

Quantitating the strength of antibody-antigen interactions: affinity and avidity Equilibrium constants equilibrium dialysis impact of multivalency

Cross-reactivity of antibodies

Measuring antibody-antigen binding

antigen.

© 1999 Garland Publishing/Elsevier Science

Characteristic	B cells	T cells
Interaction with antigen	Involves binary complex of membrane Ig and Ag	Involves ternary complex of T-cell receptor, and MHC molecule
Binding of soluble antigen	Yes	No
Involvement of MHC molecules	None required	Required to display processed antigen
Chemical nature of antigens	Protein, polysaccharide, lipid	Mostly proteins, but some lipids and glycolipids presented on MHC-like molecules
Epitope properties	Accessible, hydrophilic, mobile peptides containing sequential or nonsequential	Internal linear peptides produced by processing of antigen and bound to

Immunogenicity

- Foreignness-- greater difference from host
- Size-- bigger is better
- **Complexity** polyglycine is a poor immunogen
- **Susceptibility to phagocytosis** particles better than soluble material
- Genotype of host- esp MHC types
- Route of administration subcu better than IV
- **Dose** not too high, not too low

-promotin	ig phagocytos	sis of antigen,	others?	
TABLE 3-3 Postulated mode of acti	on of some comn	nonly used adjuvant	ts	
Adjuvant	Prolongs antigen persistence	Enhances co-stimulatory signal	Induces granuloma formation	Stimulates lymphocytes nonspecifically
Freund's incomplete adjuvant	+	+	+	_
Freund's complete adjuvant	+	++	++	-
Aluminum potassium sulfate (alum)	+	ş	+	-
Mycobacterium tuberculosis	-	?	+	-
Bordetella pertussis	-	ş	-	+
Bacterial lipopolysaccharide (LPS)	-	+	-	+
Synthetic polynucleotides (poly IC/poly AU)	-	?	-	+

Epitope and antigen binding site form complementary surfaces

Equilibrium binding equation $Ag + Ab \xleftarrow[k1]{k2} Ag - Ab$ Free Free Antigenantigen antibody Antibody complex $Ka = \frac{[Ab - Ag]}{[Ab][Ag]}$ Ka is the association binding constant. k1 or k_{on} is the association rate constant. k2 or k_{off} is the dissociation rate contant.

Equilibrium binding equation $Ag + Ab \xleftarrow{k1}{k2} Ag - Ab$ $Ka = \frac{[Ab - Ag]}{[Ab][Ag]}$ If binding is weak: k2 (off rate) is high, and Ka (association binding constant) will be low (equilibrium shifted to the left). If binding is strong: k2 (off rate) is low, and Ka will be high (equilibrium shifted to the right). Sometimes binding strength is represented by Kd (dissociation equilibrium constant) = 1/Ka $Ag-Ab \stackrel{k2}{\longleftrightarrow} Ag + Ab$ $Kd = \frac{[Ab][Ag]}{[Ab-Ag]}$ Kd (dissociation equilibrium constant) = 1/Ka (units are moles/liter) The ligand concentration at which 1/2 of the antibody is binding ligand at equilibrium, is close to the Kd

Stronger binding corresponds to lower Kd

ich 50% of the antibody and uilibrium, is close to the K_d
[Ab][Ag] [Ab-Ag]
and antigen (bound and free) is $2 \ge 10^{-7}$ M les/liter):
: $10^{-7}M = 10^{-7}M \times 10^{-7}M$ nd $10^{-7}M$
$\begin{array}{l} 0.9 \\ \text{nd} \\ 0.5 \text{ x } 10^{-9}\text{M} = \frac{10^{-8}\text{M x } 10^{-8}\text{M}}{1.9 \text{ x } 10^{-7}\text{M}} \end{array}$

Antibody	Ligand	<i>k</i> 1	k_1	Ka	κ _d
Anti-DNP	€-DNP-L-lysine	$8 imes 10^7$	1	$1 imes10^{8}$	$1 imes 10^{-8}$
Anti-fluorescein	Fluorescein	$4 imes 10^8$	$5 imes 10^{-3}$	1 × 10 ¹¹	1 × 10 ⁻¹¹
Anti-bovine serum albumin (BSA)	Dansyl-BSA	$3 imes10^5$	$2 imes 10^{-3}$	$1.7 imes10^8$	$5.9 imes 10^{-9}$

-Resonance units are proportional to the degree of binding of soluble ligand to the immobilized receptor. (or soluble antibody to immobilized antigen, as shown here)
- Determining the amount of binding at equilibrium with different known concentrations of receptor (antibody) and ligand (protein antigen) allows you to calculate equilibrium constants (Ka, Kd).

Affinity refers to strength of binding of single epitope to single antigen binding site.

But antibodies have 2 or more identical binding sites.

Most antigens are multimeric.

What is impact of valence on strength of binding?

Avidity (strength of binding) is influenced by both Affinity (Ka of single binding site) and the Valence of the interaction (number of interacting binding sites)

