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DNA from bacteria has stimulatory effects on mammalian
immune cells1±3, which depend on the presence of unmethylated
CpG dinucleotides in the bacterial DNA. In contrast, mammalian
DNA has a low frequency of CpG dinucleotides, and these are
mostly methylated; therefore, mammalian DNA does not have
immuno-stimulatory activity. CpG DNA induces a strong T-helper-
1-like in¯ammatory response4±7. Accumulating evidence has
revealed the therapeutic potential of CpG DNA as adjuvants for
vaccination strategies for cancer, allergy and infectious diseases8±10.
Despite its promising clinical use, the molecular mechanism by
which CpG DNA activates immune cells remains unclear. Here we
show that cellular response to CpG DNA is mediated by a Toll-like
receptor, TLR9. TLR9-de®cient (TLR9-/-) mice did not show any
response to CpG DNA, including proliferation of splenocytes,
in¯ammatory cytokine production from macrophages and matura-
tion of dendritic cells. TLR9-/- mice showed resistance to the lethal
effect of CpG DNA without any elevation of serum pro-in¯amma-
tory cytokine levels. The in vivo CpG-DNA-mediated T-helper
type-1 response was also abolished in TLR9-/- mice. Thus, verte-
brate immune systems appear to have evolved a speci®c Toll-like
receptor that distinguishes bacterial DNA from self-DNA.

The Toll-like receptor (TLR) family is a phylogenetically con-
served mediator of innate immunity that is essential for microbial
recognition11. Mammalian TLRs comprise a large family with
extracellular leucine-rich repeats (LRRs) and a cytoplasmic Toll/
interleukin (IL)-1R (TIR) homology domain. So far, six members
(TLR1±6) have been reported12±14, and two additional members
have been deposited in GenBank as TLR7 and TLR8 (accession
numbers AF240467 and AF246971, respectively). TLR2 and TLR4
are responsible for immune responses to peptidoglycan (PGN) and
lipopolysaccharide (LPS), respectively15±22.

By using a BLAST search, we identi®ed an expressed sequence
tag (EST) clone (AA273731; mouse) that showed high similarity
with the previously identi®ed TLRs. Using this fragment as a probe,
we isolated a full-length complementary DNA from the mouse
macrophage cDNA library. We also isolated the human counterpart.
Sequence analysis revealed the presence of regions conserved in the
TLR family, such as LRR and TIR domain (Fig. 1a, b). Therefore, we
designated this gene TLR9. Northern blot analysis of various tissues
indicated that mouse TLR9 transcripts were most abundantly
expressed in the spleen (Fig. 1c).

To assess the biological function of TLR9, we generated TLR9-/-

mice by homologous recombination in embryonic stem (ES) cells.
The targeting vector was constructed to replace a 1.0-kb fragment of
the mouse Tlr9 gene encoding a part of LRR with a neomycin
resistance cassette (neo) (Fig. 2a). Correctly targeted ES cell clones
were micro-injected into C57BL/6 blastocysts, which contributed to
transmission of the mutated allele through the germ line. We
intercrossed heterozygotes to produce offspring that were homo-
zygous for the disrupted Tlr9 allele (Fig. 2b). The mutant mice were
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born at the expected mendelian ratio. We then investigated expres-
sion of TLR9 messenger RNA in the spleen by northern blot
analysis. When we used the carboxy-terminal fragment as a probe,
we detected Tlr9 transcripts from the mutant mice at almost the
same size but in reduced amounts compared with those from wild-
type mice (Fig. 2c). We next carried out polymerase chain reaction
with reverse transcription (RT±PCR) using spleen mRNA from the
mutant mice. Sequence analysis of these products showed that the
transcribed Tlr9 gene contained the neo gene. The insertion of neo
resulted in an appearance of a stop codon at the amino-terminal
portion of TLR9, indicating that a functional TLR9 protein was not
expressed in the mutant mice (Fig. 2d). TLR9-/- mice showed no
abnormal composition of lymphocytes as determined by ¯ow
cytometry (data not shown).

MyD88 is an adaptor molecule involved in the signalling through
the IL-1R and TLR families. We previously showed that MyD88 is
essential for the response to IL-1, IL-18, LPS and many other

bacterial cell-wall components23. We have also shown that the
responses to CpG DNA are dependent on MyD88 and TRAF6
(ref. 24). MyD88-/- mice did not respond to CpG DNA, whereas
both TLR2-/- and TLR4-/- mice responded normally to CpG DNA.
These data indicate that CpG DNA is recognized by TLRs other than
TLR2 and TLR4. Therefore, we analysed responses of TLR9-/- mice
to CpG DNA. We ®rst investigated the proliferation of splenocytes
in response to CpG DNA (Fig. 3a). CpG DNA, but not non-CpG
DNA induced proliferation of wild-type splenocytes in a dose-
dependent manner. In contrast, TLR9-/- splenocytes did not
proliferate in response to either CpG DNA or non-CpG DNA,
although they showed a similar proliferative response to LPS as the
wild-type cells. Wild-type B cells showed enhanced surface
expression of major histocompatibility complex (MHC) class II in
response to CpG DNA; however, a CpG-DNA-induced increase in
MHC class II expression was not observed in TLR9-/- B cells (data
not shown). These data indicate that TLR9-/- B cells are defective in
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Figure 1 Amino-acid sequences and tissue distribution of TLR9. a, Alignment of human

and mouse TLR9. Identical amino acids are indicated by a solid box. Human and mouse

TLR9 share an overall amino-acid identity of 75.5%. The predicted signal peptide (human

and mouse, residues 1±25) and transmembrane segments (TM; human, 819±836;

mouse, 820±837) are indicated. During the preparation of this manuscript, the

sequences for human TLR9 were deposited in GenBank by two other groups (accession

numbers NM017442 and AF245704). b, Alignment of the cytoplasmic domains of human

TLR family members. Amino-acid residues conserved in least four molecules are

highlighted by solid boxes. c, A mouse multiple-tissue northern blot (Clontech) containing

2 mg of poly(A)+ RNA was probed with a mouse TLR9 cDNA fragment.
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their response to CpG DNA.
Next, we measured production of in¯ammatory cytokines from

peritoneal macrophages by enzyme-linked immunoabsorbent assay
(ELISA; Fig. 3b). Macrophages from wild-type mice produced
tumour necrosis factor (TNF)-a, IL-6 and IL-12 in response to
CpG DNA. The production was further enhanced when stimulated
with a combination of interferon (IFN)-g and CpG DNA. However,
macrophages from TLR9-/- mice did not produce any detectable
levels of in¯ammatory cytokines in response to CpG DNA even in
the presence of IFN-g. Macrophages from wild-type and TLR9-/-

mice produced similar amounts of TNF-a, IL-6 and IL-12 in
response to LPS, PGN, lipoprotein from Escherichia coli, Zymosan
and whole heat-killed Staphylococcus aureus (Fig. 3b; and data not
shown), indicating that TLR9-/- macrophages are speci®cally
defective in their response to CpG DNA.

CpG-containing bacterial DNA is a potent stimulant for dendritic
cells (DCs) to support T-helper type-1 (Th1) cell development4±7.
Therefore, we examined CpG-DNA-induced cytokine production
and upregulation of surface molecules in bone-marrow-derived
murine DCs. Wild-type DCs produced IL-12 in response to CpG
DNA; however, TLR9 -/- DCs did not produce any detectable levels
of IL-12 (Fig. 3c). Wild-type DCs showed enhanced surface expres-
sion of CD40, CD80, CD86 and MHC class II when stimulated with
CpG DNA. TLR9 -/- DCs did not show any enhanced expression of
the surface molecules in response to CpG-DNA (Fig. 3d). Both wild-
type and TLR9-/- DCs exhibited similar responses to LPS. Together,
these ®ndings indicate that TLR9 is essential for cellular responses to
CpG DNA.

Signalling through TLRs occurs through the sequential

recruitment of the adaptor molecule MyD88 and the serine/
threonine kinase IRAK, and subsequently activates mitogen-acti-
vated protein (MAP) kinases and the nuclear factor NF-kB23. We
next analysed activation of the intracellular signalling cascade in
response to CpG DNA. In wild-type macrophages, stimulation
with CpG DNA increased the DNA-binding activity of NF-kB, as
determined by electrophoretic mobility shift assay (EMSA; Fig. 3e);
however, NF-kB activity was not increased in response to CpG
DNA in TLR9 -/- macrophages. LPS stimulation of TLR9-/-

macrophages led to activation of NF-kB to the same extent as
that of wild-type cells, indicating that CpG-DNA-induced activa-
tion of NF-kB was impaired in TLR9-/- macrophages. In vitro
kinase assay showed that CpG DNA activated c-Jun N-terminal
kinase (JNK) and IRAK in wild-type macrophages. Activation of
both kinases was completely abolished in TLR9-/- macrophages
(Fig. 3f, g). Thus, CpG-DNA-mediated signal transduction is
dependent on TLR9.

Finally, we addressed the in vivo response to CpG DNA in TLR9-/-

mice. CpG DNA can induce lethal shock in D-galactosamine (D-
GalN)-sensitized mice25. Wild-type mice died within 12 h after D-
GalN plus CpG DNA administration with marked elevation of
serum concentrations of TNF-a, IL-6 and IL-12 (Fig. 4a, b). In
contrast, all TLR9-/- mice survived without any increase in serum
concentration of these in¯ammatory cytokines. Thus, TLR9-/- mice
were highly resistant to CpG-DNA-induced shock syndrome. In vivo
administration of CpG DNA has also been shown to induce a Th1-
biased response26. CpG DNA and ovalbumin (OVA) were injected
into the footpads, and lymph node cells were isolated at the 7-day
time point and stimulated with OVA. The popliteal lymph node of
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Figure 2 Targeted disruption of the mouse Tlr9 gene. a, Maps of the TLR9 genome, the

targeting vector and the predicted disrupted gene. Filled boxes denote the coding exon.

Restriction enzymes: B, BamHI; S, ScaI. b, Southern blot analysis of offspring from the

heterozygote intercrosses. Genomic DNA was extracted from mouse tails, digested with

ScaI, electrophoresed and hybridized with the radiolabelled probe indicated in a. Southern

blotting gave a single 3.0-kb band for wild-type (+/+), a 10-kb band for homozygous

(-/-) and both bands for heterozygous mice (+/-). c, Northern blot analysis of

splenocytes. Total RNA (10 mg) extracted from splenocytes was electrophoresed,

transferred to a nylon membrane, and hybridized using the TLR9 C-terminal or N-terminal

fragment as a probe. The same membrane was rehybridized with a b-actin probe.

d, Comparison of predicted amino-acid sequences between wild-type (+/+) and TLR9-/-

(-/-) cDNA. The numbers indicate predicted amino-acid position of wild-type TLR9.
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CpG DNA-treated wild-type mice showed an increase in size
compared with that of PBS treated mice, whereas TLR9-/- mice
did not show any lymphadenopathy (data not shown). Lymph node
cells from CpG-DNA-treated wild-type mice produced IFN-g in
response to OVA (Fig. 4c). In contrast, production of IFN-g from
TLR9-/- lymph node cells was not observed. Thus, CpG-DNA-
induced Th1-like response was not observed in TLR9-/- mice.

The nature and localization of the CpG receptor are controversial.
There is evidence that CpG DNA binds to cell-surface receptors that
subsequently transduce stimulatory signals, because Sepharose
beads coated with active CpG DNA stimulate B cells as free CpG
DNA27. In contrast, other reports show that internalization of the
DNA is required for activity28. Inhibitors of endosomal maturation
such as ba®lomaycin A or chloroquine abolish CpG-mediated cell
activation, indicating that cellular uptake by nonspeci®c endocy-
tosis and subsequent endosomal maturation precede cell
activation29,30. Acidi®cation of endosomal CpG DNA is coupled to
the rapid generation of intracellular reactive oxygen species, fol-
lowed by NF-kB activation31. Thus, in the latter case, it has been

proposed that CpG DNA works through binding to an intracellular
receptor. The presence of a transmembrane segment in the TLR9
gene strongly suggests that TLR9 is inserted into the membrane, but
not present in the cytoplasm. Although the localization of TLR9
awaits assessment by immunostaining, confocal data show that
tagged MyD88 colocalizes with tagged CpG DNA in endosomal
structures, but not at the cell membrane (H.W., unpublished data).
In contrast, LPS colocalizes with MyD88 at the cell membrane. This
suggests that signalling is triggered by LPS at the cell membrane,
whereas CpG DNA initiates signalling after translocation to endo-
somes. This assumption may well correlate with the ®nding that
CpG-DNA-induced IRAK activation is delayed as compared with
that stimulated with LPS (Fig. 3g). The identi®cation of CpG DNA
signalling receptor will pave the way to understanding the mechan-
ism by which CpG DNA is recognized as well as by which the
recognition of CpG DNA is translated into a strong Th1 response.
Furthermore, TLR9-/- mice will provide a useful model for clarify-
ing to what extent recognition of CpG DNA contributes to host
immune responses against bacterial infections. M
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ODN or LPS for 48 h plus pulsed [3H]thymidine for the last 8 h. [3H]thymidine incorporation
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mice were stimulated with CpG ODN (0.1 or 1.0 mM), PGN (10 mg ml-1) or LPS (1.0 mg ml
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free probe. f, Peritoneal macrophages from wild-type and TLR9-/- mice were stimulated
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by in vitro kinase assay using a GST±c-Jun fusion as a substrate (top). The same

lysates were blotted with anti-JNK (bottom). g, The same cell lysates in f were

immunoprecipitated with anti-IRAK antibody. The kinase activity of IRAK was measured by
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Methods
Cloning of TLR9

A GenBank search resulted in identi®cation of a mouse EST that has a signi®cant similarity
with human TLR4. Using PCR-ampli®ed EST as a probe, a full-length cDNA clone
containing the complete TLR9 open reading frame was isolated from the mouse RAW
264.7 cDNA library. Human genomic sequence that showed signi®cant homology with the
mouse TLR9 gene was found in GenBank. On the basis of this sequence, rapid
ampli®cation of cDNA ends protocol was performed to isolate full-length cDNA from
U937 cDNA library.

Generation of TLR9-/- mice

The TLR9 genomic DNA was isolated from 129/Sv mouse genomic library and char-
acterized by restriction enzyme mapping and sequencing analysis. The targeting vector
was constructed by replacing a 1.0-kb fragment encoding a part of LRR region with a
neomycin-resistance gene cassette (neo), and a herpes simplex virus thymidine kinase
driven by MC1 promoter was inserted into the genomic fragment for negative selection
(Fig. 2a). The targeting vector was transfected into embryonic stem cells (E14.1). G418 and
gancyclovir doubly resistant colonies were selected and screened by PCR and southern
blotting. Homologous recombinants were micro-injected into C57BL/6 blastocysts.
Chimaeric mice were mated with C57BL/6 female mice, and heterozygous F1 progenies
were intercrossed in order to obtain TLR9-/- mice. All mice analysed here were F1 progeny
of 129/Ola ´ C57BL/6.

Reagents

Phosphorothioate-stabilized CpG oligodeoxynucleotide (ODN) (TCC-ATG-ACG-TTC-
CTG-ATG-CT)28 was purchased from TIB MOLBIOL or Hokkaido System Science.
Phosphorothioate-stabilized non-CpG ODN (GCT-TGA-TGA-CTC-AGC-CGG-AA)5

was purchased from Hokkaido System Science. LPS from Salmonella minnesota Re-595
and PGN from Staphylococcus aureus were purchased from Sigma and Fluka,
respectively21.

Measurement of cytokine production from macrophages

Thioglycollate-elicited peritoneal macrophages were cultured with the indicated con-
centrations of CpG ODN, LPS or PGN for 24 h. Concentrations of TNF-a, IL-6 and IL-12
p40 in the culture supernatants were measured by ELISA.

Preparation and analysis of dendritic cells

Bone-marrow cells from wild-type or TLR9-/- mice were cultured with 10 ng ml-1 mouse
granulocyte macrophage-colony stimulating factor (Peprotech) in RPMI1640 medium
supplemented with 10% fetal bovine serum. At day 6, immature DCs were collected and
cultured in the absence or presence of 0.1 mM CpG ODN or 0.1 mg ml-1 LPS in a fresh
medium for a further 2 days. The concentration of IL-12 p40 in the culture supernatants
was measured by ELISA. DCs were stained with biotinylated antibodies against CD40,
CD80, CD86 or MHC class II, and developed with PE-conjugated streptavidin. Flow
cytometric analysis was performed using a FACSCalibur with CELLQuest software
(Becton Dickinson).

EMSA and in vitro kinase assay

Thioglycollate-elicited peritoneal macrophages (1 ´ 106 cells) from wild-type and TLR9-/-

mice were stimulated for the indicated periods and then nuclear proteins were extracted.
The extracts were incubated with a speci®c probe containing NF-kB DNA-binding sites,
electrophoresed and visualized by autoradiography.

Thioglycollate-elicited peritoneal macrophages were stimulated with 1.0 mM CpG
ODN or 1.0 mg ml-1 LPS for the indicated periods. JNK and IRAK activities in cell lysates
were measured by in vitro kinase assays as described23.

Cytokine production of presensitized lymph nodes

Age-matched wild-type and TLR9-/- mice were injected subcutaneously with CpG ODN
(5 nmol) plus soluble OVA (150 mg) into the hind footpads. Seven days later, popliteal
lymph nodes were collected and cultured with 100 mg ml-1 OVA for 24 h. Concentrations
of IFN-g in the culture supernatants were measured by ELISA.
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Motors generating mechanical force, powered by the hydrolysis of
ATP, translocate double-stranded DNA into preformed capsids
(proheads) of bacterial viruses1,2 and certain animal viruses3. Here
we describe the motor that packages the double-stranded DNA of
the Bacillus subtilis bacteriophage f29 into a precursor capsid.
We determined the structure of the head±tail connectorÐthe
central component of the f29 DNA packaging motorÐto 3.2 AÊ

resolution by means of X-ray crystallography. We then ®tted the
connector into the electron densities of the prohead and of the
partially packaged prohead as determined using cryo-electron
microscopy and image reconstruction analysis. Our results sug-
gest that the prohead plus dodecameric connector, prohead
RNA, viral ATPase and DNA comprise a rotary motor with the

³ Present address: Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue,

Cambridge, Massachusetts 02138, USA.

head±prohead RNA±ATPase complex acting as a stator, the DNA
acting as a spindle, and the connector as a ball-race. The helical
nature of the DNA converts the rotary action of the connector into
translation of the DNA.

The bacteriophage f29 (Fig. 1) is a 19-kilobase (19-kb) double-
stranded DNA (dsDNA) virus with a prolate head and complex
structure4. The prohead (Fig. 1), into which the DNA is packaged, is
about 540 AÊ long and 450 AÊ wide5. The f29 connector, a cone-
shaped dodecamer of gene product 10 (gp10), occupies the penta-
gonal vertex at the base of the prohead5 and is the portal for DNA
entry during packaging and DNA ejection during infection6. The
connector, in association with the oligomeric, f29-encoded pro-
head RNA (pRNA) and a viral ATPase (gp16), is required for DNA
packaging7±9. However, only the ®rst 120 bases of the 174-base
pRNA are essential for packaging7. The covalent adduct of the
genomic dsDNA with gp3 (DNA±gp3) can be packaged into pro-
heads in about three minutes in vitro (P.J.J., unpublished results).
The connector proteins of tailed phages6 vary in relative molecular
mass (Mr) from 36,000 (36K) in f29 to 83K in phage P22, and
assemble into oligomers with a central channel. The structure of the
isolated f29 connector has been studied by atomic force
microscopy10 and cryo-electron microscopy (cryo-EM) of two-
dimensional arrays11, immuno-electron microscopy12 and X-ray
crystallography13,14.

The connector structure, as now determined by X-ray crystal-
lography, can be divided into three, approximately cylindrical
regions: the narrow end, the central part, and the wide end,
having external radii (AÊ ) of 33, 47 and 69, respectively (Fig. 2).
These regions are respectively 25, 28 and 22 AÊ in height, making the
total connector 75 AÊ long. The internal channel has a diameter of
about 36 AÊ at the narrow end, increasing to 60 AÊ at the wide end.
Comparison with electron microscopy reconstructions5,11 shows
that the narrow end protrudes from the portal vertex of the phage
head, is associated with the multimeric pRNA, and binds the lower
collar in the mature virus.

The electron density of the connector was interpreted in terms of
the amino-acid sequence15 and was con®rmed by the two Hg sites
(see Methods section) corresponding to the only cysteine residues in
the sequence. Residues 1 to 11, 229 to 246, and 287 to 309 at the
carboxy terminus are not seen in the electron density. The second
and third disordered regions are both located on the inside of the
channel, close to the junction of the central and wide regions. The
structure is dominated by three long helices (a1, a3 and a5) in each
monomer that run the length of the central region, joining the two
end domains of the connector (Fig. 2). These helices are arranged at
an angle of about 408 with respect to the central 12-fold axis. The
two end domains are composed predominantly of b-sheets and
extended polypeptide chains. Immuno-electron microscopy map-
ping of the sequence onto the connector surface12 is consistent with
the X-ray structure only as far as localization of the external amino-
terminal residues with the pRNA-binding region at the narrow end
of the connector. The RNA recognition motif structure, previously
predicted for the N-terminal regions of the connector monomer16,17,
is not present in the structure.

The surface of the monomer presents a net negative charge to one
neighbour and a net positive charge to the other neighbour, possibly
aiding the assembly of the dodecamer. The exterior of the connector
has no signi®cant regions of charge accumulation, implying that its
rotation might be facilitated by its oily, smooth, external surface.
However, the basic character of the disordered 11 amino-terminal
residues could alter the surface properties to some extent and may
facilitate interaction with the pRNA. In contrast, the inside of the
channel has a preponderance of negative charge at its wide end,
which may repel the DNA, permitting its smooth passage during
packaging and ejection. The channel through which messenger
RNA is translocated in reoviruses has similar properties18.

We have determined the structures of four distinct types of f29
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