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REGULATION OF ORGANELLE ACIDITY 

Introduction 
Intracellular compartments are largely defined 

by their lumenal pH. Regulation of organelle 

acidity is a vital aspect of cellular homeostasis. 

This lesson will show how to: 

• Import predefined functions 

• Import and fit experimental data  

Additionally, we will explore in greater detail 

the mechanisms of ion transport.  

Figure 1. Typical organelle pH values.   

A Two Compartment Model 

Biological Background 

Acidity must be tightly regulated to sustain life. Blood pH is typically 7.4 pH units; when this value 

falls to just 7.2 severe acidosis ensues and massive system failure follows and, if not treated, will 

result in death. Treatment involves the addition of buffer solutions to the blood. All cellular 

compartments maintain a distinctive pH that is essential to their function (see Figure 1); For 

example, lysosomes have pH ~ 5.0, in order to degrade harmful substances. The acidification of 

endosomes as they mature from early to late stages is required for the dissociation of receptors and 

ligands so that receptors can be recycled to the cell surface. A comprehensive understanding of how 

cellular organelles maintain their pH does not exist. As we will see, modeling can be a useful tool for 

interpreting experimental data. 
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The principal components of organeller pH regulation are 

listed in Figure 2. It is believed that the competition 

between the proton pumping V-ATPase (item #1) and 

channel mediated proton leaking (item #2), determines the 

steady state pH of many organelles. In the crudest terms, 

this is like trying to file up a swimming pool with a bunch 

of holes in it. The pool will fill until the input hose is 

overpowered by the leaks. The case of ion transport is 

complicated by other factors. The lumen of the organelle 

buffers many of the protons that are pumped from the 

cytoplasm (item #4). Additionally, as positive protons move 

across the organelle membrane an electric membrane 

potential builds up. This membrane potential is offset by 

the counter-movement of ions like potassium (item #3). All 

of these effects can be combined into a coherent model.  

Mathematical Description 

THE V-ATPASE PROTON PUMP ACIDIFIES ORGANELLES 

The hydrolysis of ATP provides the energy for pumping protons against their concentration gradient. 

For our purposes, we require the average pumping rate of a single V-ATPase as a function of 

membrane potential and pH gradient, J(ΔΨ,ΔpH). This function is defined numerically in the file 

VATPASE; it has been computed from another more complicated model.  

THE PASSIVE LEAK OF IONS DEPENDS UPON CONCENTRATION AND MEMBRANE POTENTIAL 

Intact bilayers are somewhat permeable to protons, but impermeable to other ions. Ion-specific 

channels allow an organelle to equilibrate specific ions between the lumen and cytoplasm. 

Movement of these ions through the channel is driven by the transmembrane concentration 

difference and the membrane potential. The simplest model for the diffusion flux of ions in the 

presence of a membrane potential can be described by 

 

Figure 2. Key pH regulatory 
elements. 1) V-ATPases, 2) 
proton leaks, 3) K+ leaks, and 4) 
lumenal buffering. 
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where P is the permeability of the membrane to each ion, S is the surface area of the compartment, C 

refers to cytoplasmic concentrations, L refers to lumenal concentrations, and U is the reduced 

membrane potential, U = ΨF/(RT). Note that U has no units; it is dimensionless. F is Faraday’s 

constant, R is the gas constant, and T is absolute temperature. The value of F/(RT) in milliVolts at 

room temperature is given in Table 2. 

PROTONS BECOME BUFFERED AFTER THEY CROSS THE MEMBRANE 

Cellular spaces are sponges for protons and other ions. Proteins and molecules are constantly 

binding and releasing ions from solution. The buffering capacity, β (units: [M/pH]), measures the 

ability of the lumenal matrix to bind protons. When protons cross the lipid bilayer a certain fraction 

of them are immediately bound and do not contribute to the pH. The change in proton concentration 

of the lumen and the change in pH are given by: 

 (Change in proton concentration) = Δ[H+]L = – β⋅ΔpH   (2) 

In general, spaces have different buffering capacities at different pH values, but we will assume that 

the buffering power is a fixed constant. For measured values see Table 1.  

ACCUMULATED CHARGE AS A MODEL FOR MEMBRANE POTENTIAL 

The membrane potential affects the flow of ions across lipid membranes and biases the distributions 

of those ions at steady state. Electroneutrality requires every small volume to be electrically neutral. 

The membrane potential arises from the microscopic deviation from electroneutrality at a lipid 

boundary. We use an explicit form for the membrane potential across the bilayer in terms of the 

excess charge inside the organelle. This treatment is very similar to the treatment of the membrane 

potential in the axon models. We assume that the net charge localizes to the lumenal leaflet, so that 

we can treat the membrane as a parallel plate capacitor. The potential drop across the bilayer is then 

written as: 
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where A is the surface area of the membrane (called S everywhere else in the text), C0 is the 

capacitance per unit area of the membrane (C0⋅A is the total capacitance of the membrane), V is the 

volume of the organelle, and the numbered terms giving the concentrations of charged particles are: 

1. Total concentration of potassium ions.  

2. Total amount of buffered and free protons in the lumen. β is the buffering capacity. We 

assume that protons do not contribute to the membrane potential when the lumenal pH is 

equal to the cytoplasmic pH. 

3. Molar concentration of all impermeant charges. This term primarily represents fixed negative 

protein charges trapped in the lumen and we call these Donnan particles. 

Despite the complexity of this system, it is only a two-tank model. In the next section we will 

construct this model in Berkeley MadonnaTM.  

Assembling the Model 
Before we begin constructing the model, we must think carefully about the time-dependent variables 

and their relationship to other variables in the model. As with other exercises, we will keep track of 

the number of protons, NH, and the number of potassium ions, NK, that enter the organelle. So make 

these the tanks. The cytoplasmic values of these ions change very little during acidification; 

therefore, we will take these values as constants. 

Pure Proton and Potassium Leak 

Using the Flowchart, start by constructing tanks and flows corresponding to the number of protons, 

NH, and potassium ions, NK, in the lumen. Have only one flow into each tank and call the flows H 

Flow and K Flow. How can we use only 1 flow if the ions can move in and out of the organelle? 

Now fill in the passive flows as described by Equation 1. Fill in a few of the variables needed for the 

passive flow by using Function Balls. This will begin to assemble the corresponding differential 

equations in the Equations Window. Once you have the basic tanks and flows set up, even though 
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you do not have anything filled in, go to Flowchart/Discard Flowchart and get rid of the 

Flowchart. At this point, only include the passive leak for each time dependent variable (see 

Equation (1)). In general, reservoirs should represent numbers of things. Here we have chosen 

number of particles, but previously we have used moles. We will need to compute the proton and 

potassium ion concentrations, which are closely related to NH and NK. For now, we will let: 

[K+]L = NK/Na/V 

and 

[H+]L = NH/Na/V; pHL = -LOG10([H+]L) = -LOG10(NH/Na/V), 

but these last two equations are only true in the absence of proton buffering. Na is Avogadro’s 

Number. 

The initial values for NK and NH must be set before the model can be solved. We will assume that 

the initial total number of protons in the lumen is given by the initial pH value of the lumen. This 

boils down to assuming that there are no buffered protons at the beginning of the simulation:  

INIT NH = 10^(-pH_L_INIT)*Na*V 

where pH_L_INIT is the variable for the initial luminal pH, which we call pHinitial. Since cellular 

spaces are largely electroneutral, we will set the initial number of potassium ions such that the total 

membrane potential starts at zero according to Eq. 3: 

INIT NK = (B-Beta*(pH_C-pH_L))*Na*V 

B, Beta, Na, V, and pH_C (the pH of the cytoplasm) are all constants that you can define in the 

equations. To start, set B to 0.1 M and Beta equal to 0.01 M/pH. 

HANDLING THE FLOWS. Next we will construct the leak flows for the protons and potassium. These 

equations require special care, as we now discuss. Often we encounter equations such as y = x/x that 

we want to evaluate when the denominator is equal to zero. In this case, the answer is 1, but if we 

ask the computer to evaluate this it will return a divide by zero error. Computers do not take limits 

easily. Equation (1) exhibits this problem when the membrane potential is equal to zero. The easiest 

way to handle this problem is to rewrite the equation in an equivalent form at the troubled areas. For 

Equation 1, we use the form: 
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Use the IF statement in Berkeley MadonnaTM to implement this form of the leak term for the 

protons and the potassium ions. The Madonna Code appears as follows:  

J_H_Leak = IF abs(U) > 0.01  
THEN  
Permh*S*U*(H_L – H_C*exp(-U))/(1-EXP(-U))*Na/1000  
ELSE  
Permh*S*(H_L – H_C*exp(-U))/(1-U/2+U*U/6)*Na/1000, 
 

where we have used Permh for the proton permeabilityfor JH leak, Na for Avogadro’s Number, and 

H_L and H_C for the luminal and cytoplasmic proton concentrations. Additionally, the model will 

keep track of the total number of particles, so the flows must be in ions per second. Analysis of the 

parameter values in Equations 1 or 5 reveals that the equation has dimensions of 

(cm3/sec)⋅(moles/liter). Remembering that 1000 cm3 is equal to 1 liter, this reduces to: 

moles/sec/1000. Finally, since 1 mole is equal to Na (Avogadro’s Number), we realize that we need 

to multiply Eq. 1 by Na/1000 to be consistent with our Tanks representing the number of ions. 

Hence, in the Madonna code above you will see this factor at the end of the equation for the flows. 

Answer the following questions by using the numbers for the Golgi from Table 1. You will have to 

set Ψ, PSI, equal zero, and we will assume that the proton permeability is PH = 1.3×10-8 cm/s. Next, 

you should implement a corresponding IF/THEN statement for the K+ flow. Once you have added 

the flows to your Equations Window, make sure that the differential equations for NH and NK are as 

follows:  

d(NH )

dt
= −J

H Leak
AND

d(NK )

dt
= −J

K Flow
 

Based on Equation 4, why do we need the negative sign in each equation? 
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Exercise 1. Start off with the lumenal pH = 8.4, 5.4, and 4.4 and watch the pH change 

until it is the same as the cytoplasmic value. What is the time constant for the 

pH changes? How does this change if you look at proton concentration?  

Exercise 2. Track the corresponding changes to the lumenal K+ concentration. What is 

the time constant for this movement? The ratio of time constants is related to 

the ratio of permeabilities. When the model reaches steady state, if the lumenal 

and cytoplasmic quantities are not equal then the channels are not being 
treated properly.  

Accounting for Proton Buffering 

Use ΔpH = -1/β⋅Δ[H+] to rewrite the equation for the luminal pH, pHL. We rewrite Eq. 2 as follows: 

                pHL = pHinitial – 1/β⋅(NH/Na/V – 10^(-pHinitial)),    (5) 

where pHinitial is the initial pH of the lumen at the beginning of the simulation. Notice that when 

there is buffering, NH/Na/V is no longer the luminal proton concentration but rather the total number 

of protons in the lumen, bound plus free. We need to rewrite the luminal proton concentration as: 

[H+]L = 10^(-pHL). 

Once you have added buffering, carry out the following exercise. 
Exercise 3. Compare the time constants for the lumenal proton concentration when the 

buffering is 0.01, 0.02, and 0.04 M. Notice that the proton movement is 

extremely slow now. Additionally, the change in pHL is proportional to the 

proton concentration not the pH. Therefore, the solution is not an exponential 
and the time constant depends upon the initial values. You should set the stop 

time to 108 s, and DTMAX to 106. 

Couple in the Membrane Potential 

So far the leak terms should be well behaved. When we add in the membrane potential, which 

couples the ion flows, we might find that our equations are not quite right. Expect problems here. 
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Represent the membrane potential as in Equation (3). Let the Donnan particle concentration, B = 0.1 

M. Explore the model and once you are convinced that it is giving reasonable results continue.  

Add in Proton Pumping 

Select Data Sets and import the function VATPASE as a 2-D matrix. We can set the pump rate equal 

to this function by defining it like this: 

Jpump = N _ pump*#VATPASE(psi, pH _ L)     (6) 

This function returns the number of protons per second per pump. What factors must this function be 

multiplied by so that it can be used in the differential equation for NH? Anything? You must define a 

new parameter, N_pump = number of pumps on the organelle membrane. Once the entire model is 

complete move on to the case studies.  

NOTE: Predefined numerical functions are only defined over a certain domain. If during a simulation 

your variables extend beyond this domain the predefined function will not give the correct results. 

VATPASE is defined for 4.0 < pHL < 7.6 and –80 mV < Ψ < 260 mV.  

Case 1. Endosomal Acidification 

Endosomes have been extracted from cells and are bathing in a 7.4 pH solution with 100 mM K+. 

The V-ATPase proton pumps are not working because the solution lacks ATP. The pH of the 

endosome is measured using pH sensitive dyes. At 0 seconds, ATP is reintroduced to the bathing 

solution and the endosomes begins to acidify from pH 7.47. Load the file MVB_74 into your model 

(this is the acidification data).  

Exercise 4. Using the endosome (MVB) parameters from Table 1 determine the number 

of V-ATPase pumps and the proton permeability by fitting the model pH to the 

experimental data. Start with the pHinitial set to 7.47. Using the fact that the 

endosomal pH = 7.4 in the absence of any proton pumping, determine the 

concentration of Donnan particles (B).  
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Case 2. Membrane Leakiness 
We want to determine the proton permeability of the Golgi and secretory granule. We have provided 

you with two data sets each containing five experiments:  

Data Set #1 - [SG_1; SG_2; SG_3; SG_4; SG_5] 

Data Set #2 - [Golgi_1; Golgi_2; Golgi_3; Golgi_4; Golgi_5] 

Load this data into your program. In each of these experiments, intact cells have been loaded with 

pH fluorescent dyes that localize to specific organelles in the cell. The pH of the organelle can then 

be measured by recording the light emitted from the cell. At time zero, the cell was washed with a 

drug, bafilomycin, that inhibits the proton pump so that the organelles can no longer maintain their 

acidity, and they begin to alkalinize. This can be seen in the data sets.  

Exercise 5. For each experimental curve, begin with the initial pH near the pH of the first 
data point. Fit the model to the data using the curve fit procedure. Allow the 

program to adjust the proton permeability and the Donnan particle 

concentration, B. Record the best-fit proton permeability. Remember that the 

proton pumps have been “turned off” experimentally. This means that N_pump 

= 0 in your model. Repeat this for all the data sets and compute the mean and 
standard deviation for each organelle. Do these experiments show a noticeable 

difference in the bilayer leakiness between the Golgi and secretory granule?  

NOTE: Remember to use the correct parameters from Table 1 when analyzing different organelles. 
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Tables 

Parameter Golgi Secretory Granule Endocytic vesicle 

Surface Area [cm2] 5.14 ×10-6 1.26 ×10-9 8.35 ×10-10 

Volume [L] 2.6 ×10-14 4.2 ×10-18 2.27 ×10-18 

Potassium permeability [cm/s] 1 ×10-5 1 ×10-5 1 ×10-5 

Buffering capacity [M/pH] 0.01 0.02 0.04 

Table 1. Typical values for Golgi, secretory granules, and endosomes.  

Parameter Value 

Cytoplasmic pH 7.4 

Cytoplasmic potassium [M] 0.100 

Membrane capacitance [kF/cm2] 1 ×10-9 

Faraday’s Constant [moles/Coulomb] 96,480 

Avogadro’s Number [molecules/mole] 6.02 ×1023 

RT/F [mV] 25.69 

Table 2. Constants and typical variables.  


