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VIRUS POPULATION DYNAMICS 

Introduction: The basic epidemic model 
The classical model for epidemics is described in [1] and [Chapter 10 of 2].  

Consider a population of uninfected individuals who wander randomly about a city. When they 

encounter someone infected with a virus, there is a certain probability that they will become 

infected. Infected people get sick for a while, then recover, where after they are immune to the 

virus. We would like to construct a model the could predict the conditions for an epidemic to 

break out.  

There are three reservoirs of individuals: 

S(t) = number of uninfected, but susceptible people at time t. 

I(t) = number of infected people at time t. 

R(t) = number of recovered people at time t. 

The number of people in the city, N, is considered constant, S + I + R = N, at all times. Therefore 

we can connect Flows between S and I, and between I and R. Call the Flow between S and I JSI = 

InfectionRate, and the Flow between I and R JIR = RecoveryRate.1 

S
J

SI
I
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R  

Now we must describe how the flows are controlled using Functions. First, what influences the 

flow from S  I? Suppose that the city is small and the people mill about at random in the town 

square every day. Then encounters between susceptible and infected individuals occur at 

random, and we can define an average infection rate by assuming random encounters similar to 

that used in chemistry: S + I    I ; that is, random collisions between uninfected and infected 

individuals create new infections at a rate  (with units [1/time], so that the flow between S and I 

is:  

JSI = S I. 

Thus the InfectionRate flow depends on S, I, and , as shown by the arcs in Figure 1.  

To model the flow from I to R, we assume that the average time an infected takes to recover is 

1/a [1/days]. Thus the Flow between I and R is  

JIR = a I, 

where a is the rate constant (= the inverse of the mean lifetime in reservoir I).   

The complete model is shown in Figure 1; all that is left is to assign numerical values to the 

reservoir initial conditions and the two parameters,  and a. In Figure 1 we have chosen to move 

                                                

1  If the recovers lost their immunity and became susceptible to re-infection, then we would have to connect a flow 

from R back to S; but we ignore this possibility here. 
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the initial condition for the susceptibles outside the reservoir so that we can treat it as an 

adjustable parameter, S0.  

 

 

Figure 1. The basic epidemic model. (a) The reservoirs S, I, and R are the state variables. (b) 

Since S + I + R = N, the reservoir R can be replaced by a Function: R = N S I. 

Berkeley Madonna automatically keeps track of conserved flows, so this explicit 

reduction is not strictly necessary for numerical calculations.  

The Equation window gives the model equations can then be written directly in conventional 

notation as follows:  S I
a

R  

Equation 1  
dS

dt
= SI
Infection
rate

, S(0) = S0   Susceptible 

Equation 2  
dI

dt
= SI
Infection
rate

aI
Recovery
rate

, I(0) =1 Infected 

Equation 3  
dR

dt
= aI
Recovery
rate

, R(0) = 0   Recovered 
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Figure 2. The phases of an epidemic [1, 3]. Early on in the trajectory of the Infected 

population, I(t), the Establishment phase, stochastic effects dominate and determine 

whether the epidemic ‘breaks out’. Once R0 >1, the epidemic enters an exponential 

growth phase. As the supply susceptibles decreases, so does the infective 

population, until all have recovered. This assumes a closed system where the total 

population is constant. 

Exercise. Run the model for a few parameter values and reproduce Figure 2. 

The net reproductive ratio, R0, detects the onset of an epidemic 

The three parameters, S0, , and a can be combined into a single dimensionless measure of the 

ability of the virus to propagate itself in the population. It is conventional to ask whether the 

infection will grow if  we introduce a single infected individual into the population. To do this, 

we set I(t = 0) =  INIT I = 1, and R(t = 0) = INIT R = 0, and compute the ratio of the inflow to 

the outflow from the infected reservoir:  

InfectionRate/RecoveryRate = JSI/JIR = ( SI/aI)|t=0 = S0/a  R0. 

R0 = S0/a is the virus net reproductive ratio; if R0 > 1, the infected population will grow, 

otherwise it will die out. In Box  1 we show how this quantity arises naturally when we 

renormalize the equations so that they are dimensionless.  

The course of an epidemic is described schematically in Figure 2 [1, 3]. In the following 

exercise, you can reproduce these curves using experimental data on a closed infected 

population. 

Exercise. The table in Figure 3 shows actual data on flu infections over the course of 
two weeks. Use Berkeley Madonna’s Curve Fit routine to fit the data to the 

model using the parameter a as the fitting parameter, and N = 763,  = 

0.002.  
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Figure 3. Fitting the model to influenza data. The table gives the number of infecteds 

measured over two weeks at a boys school. The outbreak began with a single 

student from an initial population of 763. The infection rate, , was independently 

estimated as  = 0.00218. 

Population dynamics of a virus in the body 
The demography of viruses inside a single organism is modeled very much like that of the 

organisms themselves. In describing the basic model for virus dynamics we follow the treatment 

Box  1. Setting the time scale defines R0 

It is often a good idea to cast the equations the following form so that the various time scales can be 

distinguished: 

Equation 5  
du

dt
= ƒ(u, p),  

where u is any of the reservoir variables, p represents the parameters and  is the time constant.1 Since 

we are most interested in the time scale of the infected population, we divide the equations by the 

parameter a, so that the time constant for the infecteds is I = 1/a. Then the equations have the form 

Equation 5 

   

1

a

dS

dt
=

a
SI ,

1

a

dI

dt
=

a
S

0

Basic Reproductive
Ratio

S

S
0

I I ,
1

a

dR

dt
= I  

It is sensible to measure time in units of I = 1/a; i.e. t  t/a, and to measure the populations S and I as 

a fraction of their initial value: S  S/S0, I  I/1. Of course, we cannot measure R this way since its 

initial value is zero; however, since we know that R = N S I, R  R/(N S0 1). If we substitute these 

renormalized variables into Equation 5, we see that the dimensionless parameter R0 = S0/a controls 

the dynamics of the system. This shows that the variable R is not really a variable since it can be 

eliminated by using the conservation relation S + I + R = N. Therefore, we could replace the Reservoir 

R by a Function. This is not necessary in Berkeley Madonna since the Flowchart automatically keeps 

track of conserved flows. 

Time[days] Infected 
3 2.58E1 

4 7.66E1 

5 2.26E2 

6 2.96E2 

7 2.56E2 

8 2.35E2 

9 1.92E2 

10 1.26E2 

11 7.15E1 

12 2.49E1 

13 7.31E0 
14 5.12E0 
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found in Nowak and May’s classic text, which should be consulted for a more detailed treatment 

[4].  

The simplest model assumes that the body can be modeled as a ‘well stirred’ chemostat 

containing the virus, V(t), and two kinds of cells: uninfected but susceptible cells, S(t), and cells 

infected by virus, I(t). The life cycle of the virus is shown diagrammatically in Figure 4a. 

Susceptible cells are produced by cell proliferation at a constant rate S0, live for an average 

lifetime S = 1/ S, and die. Thus the deathrate of uninfected cells is their number divided by their 

average lifetime S/ S. Virus infects cells to produce infected cells, I, with an ‘efficiency’, . 

Since cells are infected by contact with virus, we model the infection rate as a simple mass action 

reaction: S +V    I . Infected cells die and release new viruses at a rate k; these viruses are 

cleared from the system at rate c. Therefore, the model consists of three Reservoirs, denoted S, I, 

and V.  

 

 

Figure 4. (a) The virus life cycle. Susceptable cells (S) are supplied at a rate S0 and die at a 

rate S = 1/ S. Virus (V) infects cells by a mass action rate: SV, where  is the 

efficiency of infection. Infected cells die at rate I; and release virus particles at rate 

k. Viruses are cleared by the immune system at a rate c. (b) Flowchart for viral 

dynamics. 

The Flowchart shown in Figure 4b assigns reservoirs to the susceptible (S), infected (I) and virus 

(V) compartments. The Flowchart produces the following set of equations in conventional 

mathematical notation: 

Equation 6   
dS

dt
= S0
Supply
rate

S
S

Death
rate

SV
Infection
rate

 Susceptible Cells  

Equation 7   
dI

dt
= SV
Infection

rate

I
I

Death

rate

   Infected Cells 
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Equation 8   
dV

dt
=

I
I

Virus
production

cV
Virus

clearance

   Virus 

The reproductive rate for a virus introduced into an uninfected population 

We use the subscript ( )ss to denote steady state quantities. Before infection, V = I = 0, and the 

steady state population of uninfected cells is given by Equation 6 when dS/dt = 0 = S0  S Sss, or 

Sss = S0/ S. Let V0 = V(t = 0) be the number of viruses introduced at t = 0. The graph in Figure 5 

shows the ‘impulse response’ of the system to the introduction of a single virus for the 

parameters values shown in the figure.  

Exercise: Make a slider to investigate the effect of varying the number of viruses 

introduced at t = 0, and the virus amplification factor, . Find the value of  

at which the virus becomes self-sustaining. 

The rate of virus production (k) by one infected cell over its lifetime is called the ‘burst size’, 

k/ . If the net virus production exceeds the rate at which they can be cleared from the system, 

then the virus will ‘win’ in its competition with the immune system. So an important quantity 

determining the outcome of this competition should be  ratio [Production/Clearance]. In fact, we 

can define a dimensionless ‘virus reproductive ratio’: 

R0 = the number of infected cells generated by one uninfected cell (at the beginning of the 

process, when there is not yet any infected cells) [1, 5]: 

Equation 9  

  

R
0

S
0

c

k

S I

 Virus reproductive ratio 

If R0 < 1, then the infection cannot establish itself because the virus does not infect cells as 

rapidly as they are cleared from the system. This can be seen from the steady state solution to 

equations 1-3 found by setting the rates dS/dt = dI/dt = dV/dt = 0 and solving for (Sss, Iss, Vss). A 

bit of algebra shows that the steady state can be written as: 

Equation 10  S
ss
=
S
0

R
0

, I
ss
= R

0
1( ) I

c

k
, V

ss
= R

0
1( ) S

k
  Steady state 

Since the steady state values must be positive, only when R0 > 1 can the virus establish itself.  

Exercise. Make a parameter plot of the uninfected cells and virus as the infectivity, , 

increases. There is a sudden drop in the number of uninfected cells at a 

critical value of  ( Figure 6). Investigate this transition as  and a vary to 

show that the epidemic (as defined by a maximum in the infected cell 
population) occurs when R0 > 1. 
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Figure 5. Population dynamics of susceptible cells (S), infected cells (I), and virus (V) when a 

single virus is introduced into an uninfected population using the parameters given. 

 

Figure 6. Long time cell and virus populations as the infectivity, , increases.  

HIV chemotherapy model 

Perelson, et al. formulated a simple model to describe the effect of an anti-viral drug on HIV 

infected patients [6]. The model is shown in Figure 7a. Here the ‘target’ cells (T) for the drug are 

modeled as a constant supply rate (e.g. from cell proliferation elsewhere), and the infected cells 

are denoted by I. The target cell deathrate is , and each cell death releases N virus particles. The 

corresponding flowchart is shown in Figure 7b, from which the equations describing the 

populations of virus and infected cells are: 
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Equation 11   
dI

dt
= VT

I
I, I(0) = 0  Infected cells 

Equation 12   
dV

dt
= N

I
I cV , V (0) =V

0
 Virus 

where V0 is the initial viral load.  

Exercise. Using the same parameters as the previous model, compute the steady 
state (Vss, Iss), and V(t) for various target cell populations, T. 

 

Figure 7. The Perelson et al. model. (a) Target cells, T, are infected by virus, V, to produce 

infected target cells T* 

The antiviral drug inactivates the newly produced viruses, so that there are now two virus 

populations: those still infective, VI,, and noninfective viruses, VNI, both of which are cleared at 

the same rate, c.  

Exercise. From the life cycle diagram in Figure 8a construct the Flowchart in Figure 
8b, to obtain the population equations: 

 Equation 13.   
dI

dt
= VT

I
I, I(0) = I

0
  Infected target cells 

Equation 14  
dV

I

dt
= cV

I
, V

I
(0) =V

0
   Infective Virus 

Equation 15  
dV

NI

dt
= N

I
I cV

NI
, V

NI
(0) = 0   Non-infective Virus 

Because patients were treated with the viral drug at time t = 0, the initial condition for the 

infected target cells must be set to the steady state value for the model with no drug (Equation 

11, 7): I0 = kV0T/ .  

Exercise. Table 1 shows data taken from [6] giving the total viral load as a function of time 

after administering an antiviral drug. Use Berkeley Madonna curve fitting 

option to fit this data to the model, using as fitting parameters , c, and V0. 

(The data can be loaded directly into Berkeley Madonna from a file.) 
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This model has been used to rationalize treatment of HIV infections; in particular, why it is 

desirable to treat patients with antiviral drugs as aggressively as possible at the early stages of 

infection [5]. 

 

Figure 8. (a) Virus life cycle after administering antiviral drug. VNI is the population of 

noninfective viruses which are cleared along with the still infective viruses, VI. (b) 

Flowchart for the population dynamics of total virus, V + VI + VNI. 

Time [days] V 

2.80 10-2 1.00x105 

1.26x10-1 9.66x104 

1.68x10-1 1.64x105 

2.52x10-1 1.55x105 

5.17x10-1 1.22x105 

7.69x10-1 1.22x105 

1.01x100 1.14x105 

1.26x100 1.14x105 

1.51x100 7.42x104 

1.77x100 8.48x104 

2.03x100 6.90x104 

3.01x100 3.55x104 

4.04x100 2.22x104 

5.00x100 2.15x104 

6.01x100 1.63x104 

7.02x100 4.78x103  

  

Table 1. Total virus load vs. time (from [6]).  
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