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EXCITABLE & OSCILLATORY SYSTEMS 
Excitability refers to the phenomenon where a system has but a single stable attractor, but it has 
two modes of returning to the equilibrium state. For small perturbations away from the 
equilibrium, the return is monotonic; however, for perturbations beyond a threshold value, the 
return is not monotonic, but undergoes a large excursion before settling down. The toilet is an 
example of an excitable system. 

The harmonic oscillator 
The simplest oscillator is a mass on a spring. The equation of motion is given 
by Newton’s Law: F = m⋅a ⇒ F = m⋅d2x/dt2. Let m = 1, and v = dx/dt. The 
spring force is F = −k⋅x. Then the equations of motion become 

 
  

dx
dt

= v, m
dv
dt

= !kx, or " dv
dt

= !x, where "  = m/k  

The simplest program to solve this system is: 
METHOD EULER 
STARTTIME = 0 
STOPTIME = 100 
DT = 0.01 
d/dt (X) = v 
d/dt (v) = -K*X 
INIT v = 0 
INIT X = 2 
K = 1  

But the oscillation grows! The culprit is the Euler method, so switch to, say, RK4. A better way 
to plot the oscillation is to use the phase plane (x, v), on which the trajectory is a circle. The 
frequency of the oscillation can be gotten by pressing the Fourier Transform button and changing 
the x-axis to a log scale.  
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Exercise 1. Here is a simple oscillating system based on the siphon principle: When 
the fluid level reaches the High Water Level (HWL) the siphon empties the 
reservoir (i.e. Efflux >> Influx). Program the siphon oscillator using 
IF…THEN statements. 

Influx Influx

Efflux

HWL

  
 

Exercise 2. The ‘Brusselator’. The following system is a model for an oscillating 
chemical reaction. Find the approximate value for b for which the system 
becomes a limit cycle. Use the Rosenbrock stiff solver with DT = 0.002, 
DTMAX = 1, TOLORANCE = 0.01. Find the period of the oscillation using 
the Fourier transform button on the Graph window. 

  

dx
dt

= 1! b +1( )x"# $% + ax2 y, x(0) = 1

dy
dt

= bx ! ax2 y, y(0) = 1
   (1) 

A bistable switch 
The first ingredient of an excitable system is a bistable switch. Consider the first order 

system:
  

dx
dt

= ƒ(x) , where ƒ(x) has the shape shown in Figure 1. If the system is perturbed in 

either direction from its stable points past the unstable point, then it quickly switches to the other 
equilibrium. A light switch works like this. ƒ(x) defines a ‘vector field’ on the line showing 
which way the system will evolve when perturbed away from its stationary points. We will see 
that, by coupling this system to another ‘slow’ variable, one can convert the bistable system into 
an excitable or oscillatory system.  
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Figure 1. A bistable switch. A commonly used analytic form for ƒ(x) is a cubic polynomial: 
ƒ(x) = x(x-1)(x-2) . This has an unstable root at x = 1, and stable points at x = 0, 2. 
(Alternative: ƒ(x) = -x3/3 + x, which has an unstable root at x = 0.) 

Covalent modification can produce a bistable switch, as shown in Figure 2.  

 

 

   

 Figure 2. Bistable switch via a feedforward inhibition circuit.  
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Exercise 3: Figure 2 is taken from Figure 1f in reference [1]. Using the parameters 
given here, construct the model and plot the oscillations and the stimulus-
response curve. 

The Fitzhugh-Nagumo Equations 
The best example of an excitable phenomenon is the firing of a 
nerve: according to the Hodgkin and Huxley equations a sub-
threshold depolarization dies away monotonically, but a super-
threshold depolarization initiates a spike potential. Fitzhugh and 
Nagumo devised a simplified version of the H-H equations that 
describes the essential features of the nerve impulse by only two 
differential equations. 

The ionic current that flows through a nerve membrane is 
controlled by channels whose openings and closings are 
controlled by the local electrical field (voltage gated ion 
channels). For such a conductor, Ohms Law has the form I = 
g(v), where v is the transmembrane voltage and g(v) is the voltage-dependent conductance. Since 
Q = C⋅v , applying d/dt to each side the differential equation for the voltage change is: 

   
C dV

dt
=

dQ
dt

= I = ! !g(v)v " !g v( )      (2) 

where C is the membrane capacitance and I = dQ/dt is the current. The voltage gate can be either 
open or shut; that is the conductance is bistable, so it has the S-shape shown in Figure 1a.  

To turn the bistable conductance equation into an excitable system, Fitzhugh defined a slow 
depolarization variable, w(t), that can move the bistable curve up an down as shown in Figure 
1b. This results in the following system: 

 
  
dv
dt

= !g(v) ! w + I  (1.3) 

 
  
dw
dt

=
1
!

v " kw " b( )  (1.4) 

where ⎮ > 1, and k > 0.  
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!

 

METHOD RK4 
 
STARTTIME = 0 
STOPTIME=2000 
DT = 0.2 
 
g = v*(v - v0)*(v -1) 
v' = - g - w + I 
INIT v = 0.2 
 
w' = (v - k*w - b) / tau  
INIT w = -0.1 
 
v0   = 0.15 
I      = 0 
tau  = 40 
k     = 0.5 
b     = 0 
 
vnullcline = - v*(v - v0)*(v - 1) + I 
wnullcline = (v - b) / k 

Figure 3. Phase plane for equations (2) and (3) showing the Nullclines 
that lead to excitable behavior.  

The phase portrait for this system shows how an excitable system 
works: the single equilibrium at the origin is locally stable, but a small 
perturbation causes the system to make a large excursion before 
returning to rest. This sort of phase portrait is typical of excitable 
systems. 

 

Note that by varying a parameter (e.g. Ι) the excitable system can be transformed into a bistable 
system in two variables. We will also see that, by adjusting the parameters, the system can 
oscillate in a limit cycle. 

Exercise 4. Use the model equations at the right to make time and phase plane (w vs. 
v) plots and then 

1. Make sliders for the parameters and find a parameter combination that makes 
the system oscillate.  

2. Make a parameter plot of a critical parameter I vs. the amplitude of the 
oscillation to find the ‘bifurcation point’ where the oscillations suddenly appear. 

3. Use the initial condition button, Ic, on the graph window to explore the pattern of 
trajectories. 

4. Use the Fourier Transform button to estimate the period and frequency of the 
oscillation. 

5. Try the RK2 and Stiff solver methods and compare how many iterations 
Madonna™ had to execute. 
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The simplest limit cycles 
It is sometimes easier to think of periodic phenomena as 
taking place on a circle: 0 ≤ θ ≤ 2π: dθ/dt = ω(θ). Let ω(θ) = 
ω − A⋅sin(θ). Sketch the vector field on the circle showing 
the stability of the equilibrium points and their stability as ω 
is varied. To do this, ‘snip’ the circle at θ = 0 and unwrap it 

so it looks like this →  
(Make the length of the vectors proportional to the speed of 
the ‘phase point’.) 

A slightly more elaborate version of the circular limit cycle 
is 

  
dr
dt

= r(1! r),
d"
dt

=#  

where the radius of the limit cycle, r, is governed by the 
simple logistic equation with amplitude = 1, and the speed 
around the cycle is ω = constant.  

Calcium Oscillations and Cellular Signaling 
Here we will learn how to model the oscillatory dynamics of the calcium second messenger 
system. The reference paper for this problem set is [2]. A reprint is on the course web site.  

  

Figure 4. (a) The calcium oscillator. (b) The shape of the reaction velocity functions. 

Many types of cells, when stimulated by hormones or neurotransmitters, burst into repetitive 
spikes of intracellular calcium release. The period of these oscillations ranges from less than 1 
second to more than 30 minutes. These oscillations are thought to be an important attribute of 



EXCITABLE &OSCILLATORY SYSTEMS 

- 7 - 

intra and intercellular signaling mechanisms. From our viewpoint they are a good example of 
"limit cycle" kinetics, and will give us an opportunity to learn how to model periodic chemical 
dynamics.  

Consider the calcium transport system, shown in Figure 4. We write conservation equations for 
the concentration of intracellular calcium, Z, and the concentration in the IP‹-insensitive pool 
(pool 2), Y: 

   

dZ
dt

rate of change
of cytosolic

calcium

!
= v0

into
cell

! + v1!
discharge
from pool 1

! " v2

transport
into pool 2

! + v3

transport
out of pool 2

! + k f Y
leak from

pool 2

!
" kZ

transport
out of cell

!    (5)

 

   

dY
dt

rate of change
of calcium in

pool 2

!
= v2

transport
into pool 2

! ! v3

transport
out of pool 2

! ! k f Y
leak from

pool 2

!
      (6)

 

The fluxes into and out of the IP3 insensitive pool (2) are the key nonlinearities controlling the 
behavior of the system. They are Michaelis-Menten type rate laws: 

  
v2 =VM 2

Z n

K2
n + Z n = 65

Z 2

1+ Z 2      (7) 

 

  

v3 =VM 3

Y m

KR
m + Y m !

Z p

K A
p + Z p

= 500
Y 2

22 + Y 2

Z 4

0.9 + Z 4

     (8) 

Table 1 lists the parameters of the model, their units, and the values that produce oscillatory 
behavior. 

PARAMETER VALUE UNITS 
vo 1 µM/s 
k 10 1/s 
kf 1 1/s 
v1 7.3 µM/s 
V  65 µM/s 

VM3 500 µM/s 
K2 1 µΜ 
KR 2 µΜ 
KA 0.9 µΜ 
m 2 1 
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Exercise 5. Make a Madonna Flowchart to 
simulate the system.  

1. Show that the period of the oscillations 
decreases as β increases. 

2. Start with a small value of the composite 
parameter (vo + βv1) and show that as this quantity increases oscillations begin to 
appear only after a critical value is reached (this is called a "bifurcation point").  

3. Note that the nullclines (dZ/dt = 0 = dY/dt) of the calcium regulation system look 
very such like those of the Fitzhugh-Nagumo equations. Indeed, an examination of 
the nullclines shows that, with appropriate tuning of parameters, the calcium model 
can exhibit excitable behavior. 

Table 1. Parameter values  

n 2 1 
p 4 1 

Yo 0.1 µΜ 
Zo 10 µΜ 
β 0.3  
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 A good elementary textbook on modeling of dynamical systems in biology is: 

• Edelstein-Keshet, L. (1988). Mathematical Models in Biology. Ed.) New York: Random House. 

Nullcline Analysis 

http://www.sosmath.com/diffeq/system/qualitative/qualitative.html 

http://www.sosmath.com/diffeq/system/nonlinear/linearization/linearization.html 

 


