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Brain regions that process faces reveal deep insights 
into the neural mechanisms of vision 

By Doris Y. Tsao 

N E U R O S C I E N C E 

When I was in high school, I learned one day about the density of curves 
in an introductory course on calculus. A simple pair of differential equa-
tions, which model the interactions of predators and prey, can give rise 
to an infinite number of closed curves—picture concentric circles, one 
nested within another, like a bull’s-eye. What is more, the density of 
these curves varies depending on their location.

This last fact seemed so strange to me. I could easily imagine a finite 
set of curves coming close together or pulling apart. But how could an 
infinity of curves be denser in one region and less dense in another? 
I soon learned that there are different types of infinity, which have para-
doxical qualities, like Hilbert’s Hotel (where the rooms are always fully 
booked but new guests can always be accommodated) and the 
Banach-Tarski apple (which can be split into five pieces and rearranged 
to make two apples of equal volume as the original). I spent hours poring 
over these mathematical proofs. Ultimately they struck me as symbolic 
magic of no real consequence, but the seed of interest had taken root. 

Illustration by Brian Stauffer

FACE  
VALUES
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Later, as an undergraduate at the 
California Institute of Technology, I 
learned about the experiments of 
David Hubel and Torsten Wiesel and 
their landmark discovery of how a 
region in the brain called the prima-
ry visual cortex extracts edges from 
the images relayed from the eyes. I 
realized that what had actually mys-
tified me back in high school was 
the act of trying to �imagine �different 
densities of infinity. Unlike the 
mathematical tricks I had studied in 
high school, the edges that Hubel 
and Wiesel described are processed 
by neurons, so they actually exist in 
the brain. I came to recognize that 
visual neuroscience was a way to un-
derstand how this neural activity 
gives rise to the conscious percep-
tion of a curve. 

The sense of excitement this re-
alization triggered is hard to de-
scribe. I believe at each stage in life 
one has a duty. And the duty of a 
college student is to dream, to find 
the thing that captures one’s heart 
and seems worth devoting a whole 
life to. Indeed, this is the single 
most important step in science—to 
find the right problem. I was capti-
vated by the challenge of under-
standing vision and embarked on a 
quest to learn how patterns of elec-
trical activity in the brain are able 
to encode perceptions of visual ob-
jects—not just lines and curves but 
even objects as hard to define as 
faces. Accomplishing this objective 
required pinpointing the specific 
brain regions dedicated to facial 
recognition and deciphering their 
underlying neural code—the means 
by which a pattern of electrical im-
pulses allows us to identify people 
around us. 

The journey of discovery began 
in graduate school at Harvard Uni-
versity, where I studied stereopsis, 
the mechanism by which depth per-
ception arises from differences be-
tween the images in the two eyes. 
One day I came across a paper by 
neuroscientist Nancy Kanwisher, 
now at the Massachusetts Institute 
of Technology, and her colleagues, 
reporting the discovery of an area in 
the human brain that responded 
much more strongly to pictures of 

faces than to images of any other ob-
ject when a person was inside a 
functional magnetic resonance im-
aging (fMRI) brain scanner. The pa-
per seemed bizarre. I was used to 
the brain being made of parts with 
names like basal ganglia and orbito-
frontal cortex that had some vague 
purpose one could only begin to 
fathom. The concept of an area spe-
cifically devoted to processing faces 
seemed all too comprehensible and 
therefore impossible. Anyone could 
make a reasonable conjecture about 
the function of a face area—it should 
probably represent all the different 
faces that we know and something 
about their expression and gender. 

As a graduate student, I had used 
fMRI on monkeys to identify areas 
activated by the perception of three-
dimensionality in images. I decided 
to show pictures of faces and other 
objects to a monkey. When I com-
pared activation in the monkey’s 
brain to faces with activation to oth-
er objects, I found several areas that 
lit up selectively to faces in the tem-
poral lobe (the area underneath the 
temple)—specifically in a region 
called the inferotemporal (IT) cor-
tex. Charles Gross, a pioneer in the 
field of object vision, had discovered 
face-selective neurons in the IT cor-
tex of macaques in the early 1970s. 
But he had reported that these cells 
were randomly scattered through-
out the IT cortex. Our fMRI results 
provided the first indication that 
face cells might be concentrated 
into defined regions. 

�FACE PATCHES 
After publishing my work, �I was in-
vited to give a talk describing the 
fMRI study for a faculty position at 
Caltech, but I was not offered the 
job. Many people were skeptical of 
the value of fMRI, which measures 
local blood flow, the brain’s plumb-
ing. They argued that showing in-
creased blood flow to a brain area 
when a subject is looking at faces 
falls far short of clarifying what 
neurons in the area are actually en-
coding because the relation be-
tween blood flow and electrical ac-
tivity is unclear. Perhaps by chance 
these face patches simply contained 

a slightly larger number of neurons 
responsive to faces, like icebergs 
randomly clustered at sea. 

Because I had done the imaging 
experiment in a monkey, I could di-
rectly address this concern by in-
serting an electrode into an fMRI-
identified face area and asking, 
What images drive single neurons in 
this region most strongly? I per-
formed this experiment together 
with Winrich Freiwald, then a post-
doctoral fellow in Margaret Living-
stone’s laboratory at Harvard, where 
I was a graduate student. We pre-
sented faces and other objects to a 
monkey while amplifying the elec-
trical activity of individual neurons 
recorded by the electrode. To moni-
tor responses in real time, the neu-
rons’ electrical signals were convert-
ed to an audio signal that we could 
hear with a loudspeaker in the lab. 

This experiment revealed an as-
tonishing result: almost every single 
cell in the area identified through 
fMRI was dedicated to processing 
faces. I can recall the excitement of 
our first recording, hearing the “pop” 
of cell after cell responding strongly 
to faces and very little to other ob-
jects. We sensed we were on to 
something important, a piece of cor-
tex that could reveal the brain’s 
high-level code for visual objects. 
Marge remarked on the face patch-
es: “You’ve found a golden egg.” 

I also remember feeling sur-
prised during that first experiment. 
I had expected the face area would 
contain cells that responded selec-
tively to specific individuals, analo-
gous to orientation-selective cells in 
the primary visual cortex that each 
respond to a specific edge orienta-
tion. In fact, a number of well-publi-
cized studies had suggested that 
single neurons can be remarkably 
selective for the faces of familiar 
people—responding, say, only to 
Jennifer Aniston. Contrary to my ex-
pectation, each cell seemed to fire 
vigorously to almost any face. 

I plugged madly away at Photo-
shop during these early experi-
ments and found that the cells re-
sponded not just to faces of humans 
and monkeys but even to highly 
simplified cartoon faces. 

I N  B R I E F

Understanding 
vision �remains one 
of the grand chal-
lenges that neurosci-
entists confront. 
One key aspect �of 
this problem relates 
to the way the brain 
identifies faces, the 
most important 
social emblem. 
Neurons �in defined 
sections of the cere-
bral cortex, called 
face patches, are 
dedicated to recog-
nizing faces. 
Uncovering �the 
organization of the 
face-patch system 
served as a prelude 
to deducing the 
underlying compu-
tations that the 
brain makes to  
identify faces.
This neural code 
�may serve as a 
Rosetta stone for 
representing other 
objects besides faces. 
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Observing this phenomenon, I 
decided to create cartoon faces 
with 19 different features that 
seemed pertinent to defining the 
identity of a face, including inter-
eye distance, face aspect ratio and 
mouth height, among other charac-
teristics. We then went on to alter 
these values—the inter-eye dis-
tance, for instance, varied from be-
ing almost cyclopean to just inside 
the face boundary. Individual cells 
responded to most faces but inter-
estingly did not always exhibit the 
exact same rate of firing to all faces. 
Instead there was a systematic vari-
ation in their response: when we 
plotted the firing of cells for the dif-
ferent cartoon features, we found a 
pattern in which there was a mini-
mal response to one feature ex-
treme—the smallest inter-eye dis-
tance, for instance—and a maximal 
response to the opposite extreme—
the largest eye separation—with in-
termediate responses to feature val-
ues in the middle. The response as 
a function of the value for each fea-
ture looked like a ramp, a line slant-
ed up or down. 

Once again, I was invited to give 
a job talk at Caltech. Returning, I 
had more to offer than just fMRI im-
ages. With the addition of the new 
results from single-cell recordings, it 
was clear to everyone that these face 
patches were real and likely played 
an important role in facial recogni-
tion. Furthermore, understanding 
their underlying neural processes 
seemed like an effective way to gain 
traction on the general problem of 
how the brain represents visual ob-
jects. This time I was offered the job. 

�CONTRAST IS KEY 
At Caltech, �my colleagues and I dug 
deeper into the question of how 
these cells detect faces. We took in-
spiration from a paper by Pawan 
Sinha, a vision and computational 
neuroscientist at M.I.T., that sug-
gested faces could be discerned by 
checking for specific contrast rela-
tions between different regions of 
the face—whether the forehead re-
gion is brighter than the mouth re-
gion, for example. Sinha suggested 
a clever way to determine �which 

�contrast relations can be used to 
recognize a face: they should be the 
ones that are immune to changes 
in lighting. For example, left-eye-
darker-than-nose is a useful fea-
ture for detecting a face because it 
does not matter if a face is photo-
graphed with lighting from above, 
left, right or below: the left eye is 
�always �darker than the nose (check 
for yourself ). 

From a theoretical standpoint, 
this idea provides a simple, elegant 
computational mechanism for fa-
cial recognition, and we wondered 
whether face cells might be using it. 
When we measured the response of 
cells to faces in which different re-
gions varied in brightness, we found 

that cells often had a significant 
preference for a particular contrast 
feature in an image.

To our astonishment, almost all 
the cells were wholly consistent in 
their contrast preferences—just a 
single cell was found that preferred 
the opposite polarity. Moreover, the 
preferred features were precisely 
those identified by Sinha as being 
invulnerable to lighting changes. 
The experiment thus confirmed 
that face cells use contrast relations 
to detect faces. 

More broadly, the result con-
firmed that these cells truly were 
face cells. At talks, skeptics would 
ask, how do you know? You can’t 
test every possible stimulus. How 
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Illustration by Body Scientific (brain)

Where Are the Face Detectors? 
A set of six nodes �in the inferotemporal (IT) cortex of both brain hemispheres specializes in 
identifying faces. These “face patches” function as an assembly line: in the middle lateral and 
middle fundus patches, one neuron might become 
active when faces look straight ahead; another 
might turn on for a face looking to the right. 
At the end of the assembly line, in the ante­
rior medial patch, varying views are 
stitched together. Neurons in this patch 
are active in response to the face of a 
specific individual, no matter if the view 
is from the front or side. Responses 
from a face patch of one monkey are 
generated for faces but not objects 
(�red areas in� ●A  ) and for the same in­
dividual, such as the dark-haired man, 
from varying angles (�red areas in� ●B  ). 
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Graphics by Jen Christiansen

can you be sure it’s a face cell and 
not a pomegranate cell or a lawn 
mower cell? This result nailed it for 
me. The precise match between the 
way cells reacted to changes in con-
trast between different parts of the 
face and Sinha’s computational pre-
diction was uncanny. 

� �Our initial experiments had re-
vealed two nearby cortical patches 
that lit up to faces. But after further 
scanning (with the help of a con-
trast agent that increased several-
fold the robustness of the signal), it 
became clear that there are actually 
six face patches in each of the 
brain’s two hemispheres (making a 
dozen golden eggs total). They are 
distributed along the entire length 
of the temporal lobe. These six 

patches, moreover, are not random-
ly scattered throughout the IT cor-
tex. They are located in similar loca-
tions across hemispheres in each 
animal. Moreover, work by our 
group and others has found that a 
similar pattern of multiple face 
patches spanning the IT cortex ex-
ists in humans and other primates 
such as marmosets. 

This observation of a stereotyped 
pattern suggested that the patches 
might constitute a kind of assembly 
line for processing faces. If so, one 
would expect the six patches to be 
connected to one another and each 
patch to serve a distinct function. 

To explore the neural connec-
tions among patches, we electrically 
stimulated different patches with 

tiny amounts of current—a tech-
nique called microstimulation—
while the monkey was inside an 
fMRI scanner. The goal was to find 
out what other parts of the brain 
light up when a particular face 
patch is stimulated. We discovered 
that whenever we stimulated one 
face patch, the other patches would 
light up but not the surrounding 
cortex, indicating that, indeed, the 
face patches are strongly intercon-
nected. Furthermore, we found that 
each patch performs a different 
function. We presented pictures of 
25 people, each at eight different 
head orientations, to monkeys and 
recorded responses from cells in 
three regions: the middle lateral 
and middle fundus patches (ML/
MF), the anterior lateral patch (AL) 
and the anterior medial patch (AM). 

We found striking differences 
among these three regions. In ML/
MF, cells responded selectively to 
specific views. For example, one cell 
might prefer faces looking straight 
ahead, whereas another might opt 
for faces looking to the left. In AL, 
cells were less view-specific. One 
class of cells responded to faces 
looking up, down and straight 
ahead; another responded to faces 
looking to the left or right. In AM, 
cells responded to specific individu-
als regardless of whether the view of 
the face was frontal or in profile. 
Thus, at the end of the network in 
AM, view-specific representations 
were successfully stitched into a 
view-invariant one. 

Apparently face patches do act 
as an assembly line to solve one of 
the big challenges of vision: how to 
recognize things around us despite 
changes in the way they look. A car 
can have any make and color, ap-
pear at any viewing angle and dis-
tance, and be partially obscured by 
closer objects such as trees or other 
cars. Recognizing an object despite 
these visual transformations is 
called the invariance problem, and 
it became clear to us that a major 
function of the face-patch network 
is to overcome this impediment. 

Given the great sensitivity� �of 
cells in face patches to changes in 
facial identity, one might expect 

Shape + Appearance = Face 
Identifying the face patches �was only a first step. It then became necessary to explore what hap­
pens in the neurons within each patch, setting off a search for the brain’s coding scheme for fac­
es. To derive quantitative measures for faces, the Tsao laboratory came up with 25 features for 
shape and 25 for appearance that could be used by each neuron in a face patch—a 50-dimen­
sional face space. The shape features can be thought of as those defining the skeleton—how 
wide the head is or the distance between the eyes. The appearance features specify the face’s 
surface texture (complexion, eye or hair color, and so on). 

Shape: Described by the position (x,y coordinates) of feature landmarks (yellow dots)

Appearance: Variations in luminosity of the image after first aligning it to match an average face shape

x

y

Examples of variability

Luminosity range

Average shapeExamples of variability
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that altering these cells’ responses 
should modify an animal’s percep-
tion of facial identity. Neuroscien-
tists Josef Parvizi and Kalanit Grill-
Spector of Stanford University had 
electrically stimulated a face-patch 
area in human subjects who had 
electrodes implanted in their brains 
for the purpose of identifying the 
source of epileptic seizures and 
found that stimulation distorted the 
subjects’ perception of a face. 

We wondered whether we would 
find the same effect in monkeys 
when we stimulated their face 
patches. Would doing so alter the 
perception only of faces, or would it 
affect that of other objects as well? 
The boundary between a face and a 
nonface object is fluid—one can see 
a face in a cloud or an electrical 
outlet if prompted. We wanted to 
use electrical microstimulation as a 
tool to delineate precisely what 
constitutes a face for a face patch. 
We trained monkeys to report 
whether two sequentially presented 
faces were the same or different. 
Consistent with the earlier results 
in humans, we found that micro-
stimulation of face patches strongly 
distorted perception so that the an-
imal would always signal two iden-
tical faces as being different. 

Interestingly, microstimulation 
had no effect on the perception of 
many nonface objects, but it did sig-
nificantly affect responses to a few 
objects whose shape is consistent 
with a face—apples, for one. But 
why does this stimulation influence 
the perception of an apple? 

One possibility is that the face 
patches are typically used to repre-
sent not just faces but also other 
round objects like apples. Another 
hypothesis is that face patches are 
not normally used to represent 
these objects, but stimulation in-
duces an apple to appear facelike.  
It remains unclear whether face 
patches are useful for detecting any 
nonface objects. 

�CRACKING THE CODE
Uncovering �the organization of the 
face-patch system and properties of 
the cells within was a major accom-
plishment. But my dream when we 

first began recording from face 
patches was to achieve something 
more. I had intuited that these cells 
would allow us to crack the neural 
code for facial identity. That means 
understanding how individual neu-
rons process faces at a level of detail 
that would let us predict a cell’s re-
sponse to any given face or decode 
the identity of an arbitrary face 
based only on neural activity. 

The central challenge was to fig-
ure out a way to describe faces 
quantitatively with high precision. 
Le Chang, then a postdoc in my lab, 
had the brilliant insight to adopt a 
technique from the field of comput-
er vision called the active appear-
ance model. In this approach, a face 
has two sets of descriptors, one for 

shape and another for appearance. 
Think of the shape features as those 
defined by the skeleton—how wide 
the head is or the distance between 
the eyes. The appearance features 
define the surface texture of the 
face (complexion, eye or hair color, 
and so on). 

To generate these shape and ap-
pearance descriptors for faces, we 
started with a large database of face 
images. For each face, we placed a 
set of markers on key features. The 
spatial locations of these markers 
described the shape of the face. 
From these varied shapes, we calcu-
lated an average face. We then 
morphed each face image in the da-
tabase so its key features exactly 
matched that of the average face. 

The Face Code, at Last 
Having 50 coordinates �that describe shape and appearance allows for a description of neurons’ 
firing in response to a particular face—a description that functions as a code that can be visual­
ized geometrically. In this code, each face cell receives inputs for a face in the form of the 50 
coordinates, or dimensions. The neuron then fires with a particular intensity in response to a 
certain face (�red outlines�), along what is called the preferred axis. The intensity increases steadi­
ly (�monotonically�) along the preferred axis. Furthermore the response is the same for every 
face on an axis at right angles to the preferred axis, even though those faces may look very dif­
ferent. This axis model of facial coding differs from a previous exemplar model that suggests 
that each neuron fires with maximum intensity to a single most preferred face.

Preferred axis

Orthogonal axis Axis
model
(new)

Exemplar
model
(old)

Spike in
nerve activity
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The resulting images constituted 
the appearance of the faces inde-
pendent of shape. 

We then performed principal 
components analysis independent-
ly on the shape and appearance de-
scriptors across the entire set of  
faces. This is a mathematical tech-
nique that finds the dimensions 
that vary the most in a complex 
data set. 

By taking the top 25 principal 
components for shape and the top 
25 for appearance, we created a 
50-dimensional face space. This 
space is similar to our familiar 3-D 
space, but each point represents  
a face rather than a spatial location, 
and it comprises much more than 
just three dimensions. For 3-D 
space, any point can be described 
by three coordinates (�x,y,z�). For a 
50-D face space, any point can be 
described by 50 coordinates. 

In our experiment, we randomly 
drew 2,000 faces and presented 
them to a monkey while recording 
cells from two face patches. We 
found that almost every cell showed 
graded responses—resembling a 
ramp slanting up or down—to a 
subset of the 50 features, consistent 
with my earlier experiments with 
cartoon faces. But we had a new in-
sight about why this is important. If 
a face cell has ramp-shaped tuning 
to different features, its response 
can be roughly approximated by a 
simple weighted sum of the facial 
features, with weights determined 
by the slopes of the ramp-shaped 
tuning functions. In other words: 

response of face cells = weight 
matrix × 50 face features 

We can then simply invert this 
equation to convert it to a form that 

lets us �predict �the face being shown 
from face cell responses: 

50 face features = (1/weight  
matrix) × response of face cells 

At first, this equation seemed 
impossibly simple to us. To test it, 
we used responses to all but one of 
the 2,000 faces to learn the weight 
matrix and then tried to predict 
the 50 face features of the excluded 
face. Astonishingly, the prediction 
turned out to be almost indistin-
guishable from the actual face. 

�A WIN-WIN BET 
At a meeting� in Ascona, Switzer-
land, I presented our findings on 
how we could reconstruct faces us-
ing neural activity. After my talk, 
Rodrigo Quian Quiroga, who dis-
covered the famous Jennifer 
Aniston cell in the human medial 
temporal lobe in 2005 and is now 
at the University of Leicester in 
England, asked me how my cells 
related to his concept that single 
neurons react to the faces of specif-
ic people. The Jennifer Aniston 
cell, also known as a grandmother 
cell, is a putative type of neuron 
that switches on in response to the 
face of a recognizable person—a 
celebrity or a close relative. 

I told Rodrigo I thought our 
cells could be the building blocks 
for his cells, without thinking very 
deeply about how this would work. 
That night, sleepless from jet lag, I 
recognized a major difference be-
tween our face cells and his. I had 
described in my talk how our face 
cells computed their response to 
weighted sums of different face fea-
tures. In the middle of the night, I 
realized this computation is the 
same as a mathematical operation 
known as the dot product, whose 
geometric representation is the 
projection of a vector onto an axis 
(like the sun projecting the shadow 
of a flagpole onto the ground). 

Remembering my high school 
linear algebra, I realized this im-
plied that we should be able to con-
struct a large “null space” of faces 
for each cell—a series of faces of 
varying identity that lie on an axis 

Pictures Worth 205 Neurons
For a given face, �we can predict how a cell will respond by taking a weighted sum of all 50 face 
coordinates. To predict what face the monkey saw from neuronal activity, this entire process can 
be reversed: By knowing the response of 205 face cells, it is possible to predict the 50 coordinates 
defining the exact facial features—and make a highly accurate reconstruction of a given face. 

Corresponding Reconstructed Faces Based on Neuron Activity 

Original Images from the Face Database
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perpendicular to the axis of projec-
tion. Moreover, all these faces 
would cause the cell to fire in exact-
ly the same way. 

�And this, in turn, would suggest 
cells in face patches are fundamen-
tally different from grandmother 
cells. It would demolish the vague 
intuition everyone shared about 
face cells—that they should be 
tuned to specific faces. 

I was the first person in the 
meeting’s breakfast hall at 5  a.m. 
the next morning and hoped to 
find Rodrigo so I could tell him 
about this counterintuitive predic-
tion. Amazingly, when he finally 
showed up, he told me he had the 
exact same idea. So we made a bet, 
and Rodrigo allowed the terms to 
be framed in a way that would be 
win-win for me. If each cell really 
turned out to have the same re-
sponse to different faces, then I 
would send Rodrigo an expensive 
bottle of wine. If on the other hand, 
the prediction did not pan out, he 
would send me solace wine. 

In search of an answer back in 
our lab at Caltech, Le Chang first 
mapped the preferred axis for a giv-
en cell using responses to the 2,000 
faces. Then he generated, while still 
recording from the same cell, a 
range of faces that could all be 
placed on an axis perpendicular to 
the cell’s preferred axis. Remark-
ably, all these faces elicited exactly 
the same response in the cell. The 
next week Rodrigo received an ex-
quisite bottle of Cabernet.

The finding proved that face 
cells are not encoding the identities 
of specific individuals in the IT cor-
tex. Instead they are performing an 
axis projection, a much more ab-
stract computation. 

An analogy� �can be made to col-
or. Colors can be coded by specific 
names, such as periwinkle, celan-
dine and azure. Alternatively, one 
can code colors by particular com-
binations of three simple numbers 
that represent the amount of red, 
green and blue that make up that 
color. In the latter scheme, a color 
cell performing a projection onto 
the red axis would fire electrical 
impulses, or spikes, proportional 

to the amount of red in any color. 
Such a cell would fire at the same 
intensity for a brown or yellow col-
or containing the same amount of 
red mixed in with other colors. Face 
cells use the same scheme, but in-
stead of just three axes, there are 
50. And instead of each axis coding 
the amount of red, green or blue, 
each axis codes the amount of devi-
ation of the shape or appearance of 
any given face from an average face. 

It would seem then that the 
Jennifer Aniston cells do not exist, 
at least not in the IT cortex. But 
single neurons responding selec-
tively to specific familiar individu-
als may still be at work in a part of 
the brain that processes the output 
of face cells. Memory storage re-
gions—the hippocampus and sur-
rounding areas—may contain cells 
that help a person recognize some-
one from past experience, akin to 
the famed grandmother cells. 

Facial recognition in the IT cor-
tex thus rests on a set of about 50 
numbers in total that represent the 
measurement of a face along a set 
of axes. And the discovery of this 
extremely simple code for face 
identity has major implications for 
our understanding of visual object 
representation. It is possible that 
all of the IT cortex might be orga-
nized along the same principles 
governing the face-patch system, 
with clusters of neurons encoding 
different sets of axes to represent 
an object. We are now conducting 
experiments to test this idea. 

�NEURAL ROSETTA STONE
If you ever go �to the British Muse-
um, you will see an amazing arti-
fact, the Rosetta stone, on which 
the same decree of Memphis is  
engraved in three different lan-
guages: Egyptian hieroglyphics, 
Demotic and Ancient Greek. Be-

cause philologists knew Ancient 
Greek, they could use the Rosetta 
stone to help decipher Egyptian hi-
eroglyphics and Demotic. Similarly, 
faces, face patches and the IT cor-
tex form a neural Rosetta stone—
one that is still being deciphered. 
By showing pictures of faces to 
monkeys, we discovered face patch-
es and learned how cells within 
these patches detect and identify 
faces. In turn, understanding cod-
ing principles in the face-patch net-
work may one day lead to insight 
into the organization of the entire 
IT cortex, revealing the secret to 
how object identity more generally 
is encoded. Perhaps the IT cortex 
contains additional networks spe-
cialized for processing other types 
of objects—a whirring factory with 
multiple assembly lines. 

I also hope that knowing the 
code for facial identity can help ful-
fill my college dream of discovering 
how we imagine curves. Now that 
we understand face patches, we can 
begin to train animals to imagine 
faces and explore how neural activ-
ity is shaped by the purely internal 
act of imagination. Lots of new 
questions arise. Does imagination 
reactivate the code for the imag-
ined face in the face patches? Does 
it bring back even earlier represen-
tations of contours and shading 
that provide inputs to the face-
patch system? We now have the 
tools to probe these questions and 
better understand how the brain 
sees objects, imagined or real. 

Because almost all the brain’s 
core behaviors—consciousness, vi-
sual memory, decision-making, lan
guage—require object interactions, 
a deep understanding of object 
perception will help us gain insight 
into the entire brain, not just the 
visual cortex. We are only starting 
to solve the enigma of the face. 
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