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Microenvironment and Immunology

RAE1 Ligands for the NKG2D Receptor Are Regulated by
STING-Dependent DNA Sensor Pathways in Lymphoma

Adeline R. Lam1,2, Nina Le Bert1, Samantha S.W. Ho1, Yu J. Shen1,2, Melissa L.F. Tang1, Gordon M. Xiong1,
J. LudovicCroxford1, Christine X.Koo1,2,3,4, Ken J. Ishii3,4, ShizuoAkira5, DavidH. Raulet6, andStephanGasser1,2

Abstract
The immunoreceptor NKG2D originally identified in natural killer (NK) cells recognizes ligands that are

upregulated on tumor cells. Expression of NKG2D ligands (NKG2DL) is induced by the DNA damage response
(DDR), which is often activated constitutively in cancer cells, revealing them to NK cells as a mechanism of
immunosurveillance. Here, we report that the induction of retinoic acid early transcript 1 (RAE1) ligands for
NKG2Dby theDDR relies on a STING-dependent DNA sensor pathway involving the effectormolecules TBK1 and
IRF3. Cytosolic DNA was detected in lymphoma cell lines that express RAE1 and its occurrence required
activation of the DDR. Transfection of DNA into ligand-negative cells was sufficient to induce RAE1 expression.
Irf3þ/�;Em-Mycmice expressed lower levels of RAE1 on tumor cells and showed a reduced survival rate compared
with Irf3þ/þ;Em-Myc mice. Taken together, our results suggest that genomic damage in tumor cells leads to
activation of STING-dependent DNA sensor pathways, thereby activating RAE1 and enabling tumor immuno-
surveillance. Cancer Res; 74(8); 2193–203. �2014 AACR.

Introduction
TheNKG2D system is an arm of innate immune recognition,

which is important in the context of both cancer and infection
(1–3). Transformed and infected cells increase their expression
of NKG2D ligands (NKG2DL). Engagement of the NKG2D
receptor on natural killer (NK) cells and certain T cells stimu-
lates their effector functions, which aid in tumor control (4, 5).
Recently, we elucidated a principle mechanism that induces
NKG2DLs in cancer cells: the DNA damage response (DDR;
ref. 6). DNA damage upregulates the expression of numerous
NKG2DLs, including different retinoic acid early transcript
(RAE1) isoforms and mouse UL16-binding protein-like tran-
script 1 (MULT1) in mouse cells. The DDR molecules ataxia
telangiectasia and Rad3 related (ATR) ataxia telangiectasia
mutated homolog (ATM), and checkpoint kinase 1 homolog
(CHK1) are required for expression of NKG2DLs in response to

DNA damage and the constitutive expression of NKG2DLs in
some tumor cell lines (6). Additional effector molecules of the
DDR required for mouse NKG2DL expression have not been
identified.

Optimal immune responses to autologous cells often require
the presence of pathogen- and damage-associated molecular
patterns. Pattern recognition receptors (PRR) that recognize
self-molecules, such as DNA, have been suggested to play a role
in cancer (7). Recently identified candidate cytosolic DNA
sensors include Z-DNA binding protein 1 (ZBP1/DAI) and
retinoic acid inducible gene I (Rig-I; ref. 8). Upon recognizing
DNA, these sensors activate stimulator of interferon (IFN)
genes (STING), TANK-binding kinase 1 (TBK1), and/or the
related IKK-related kinase epsilon (IKKe; ref. 9). Activated
TBK1 and IKKe directly phosphorylate IFN regulatory fac-
tor-3 (IRF3), which subsequently undergoes dimerization and
translocation into the nucleus (10). Nuclear IRF3 induces the
expression of target genes, including Infb and chemokine C-C
motif ligand-5 (Ccl5; ref. 11).

Expression of the proto-oncogene c-MYC is deregulated in
70% of human cancers (12, 13). Overexpression of c-MYC
induces DNA damage and the DDR, which was suggested to
act as a barrier against tumor development in premalignant
cells. In Em-Myc transgenic mice, c-Myc expression is driven by
the immunoglobulin heavy chain Em enhancer, leading to
precursor B-cell malignancies similar to human Burkitt's lym-
phoma (14, 15). The tumor suppressors that prevent the
development of c-Myc–expressing premalignant cells have not
been well characterized.

In the present study, we show that the DDR leads to the
presence of cytosolic DNA and activation of IRF3 in lymphoma
cell lines. The induction of RAE1 ligands by the DDR depended
on IRF3. Transfection of cells with cytosolic DNA induced the
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expression of RAE1molecules. Tumors in Irf3þ/�;Em-Mycmice
expressed lower levels of RAE1 and developed lymphoma
earlier, resulting in a shortened life span when compared with
Irf3þ/þ;Em-Myc mice. Taken together, these findings link gen-
otoxic stress to cytosolic DNA sensor signaling pathways and
the induction of RAE1 in lymphoma cell lines.

Materials and Methods
Cells

BC2 (a kind gift by Dr. L. Corcoran, WalterþEliza Hall
Institute of Medical Research, Parkville, Victoria, Australia)
and EmM1 cells were derived from Em-Myc mice (16). Yac-1
cells were purchased from American Type Culture Collec-
tion. Cells were cultured in RPMI-1640 medium (Invitrogen)
with 10% FCS (Hyclone), 50 mmol/L 2-mercaptoethanol,
100 mmol/L asparagine, 2 mmol/L glutamine (Sigma), 1%
penicillin-streptomycin (Invitrogen), and 1/1,000 plasmocin
(Invivogen).

EmM1, mouse embryonic fibroblasts (MEF), and tumor cells
in Em-Mycmice (C57BL/6) express RAE1bd and/or RAE1e. BC2
(C57BL/6/129) and Yac-1 (A/Sn) cells express RAE1a, RAE1b,
RAE1g , and RAE1d.

Reagents
Aphidicolin, caffeine, CGK733, cytosine b-D-arabinofurano-

side hydrochloride (Ara-C), Dimethyl sulfoxide (DMSO), Poly G:
C, Poly A:U, and Poly I:C were purchased from Sigma. Trans-
Fectin was purhased from BioRad. KU55933 and VE-821 were
obtained from Tocris Bioscience or Axon Medchem. ODN1585,
ODN1668 control (ssDNA), and lipopolysaccharides (LPS) were
purchased from Invivogen. DNA was conjugated to Alexa-488
using the Ulysis labeling kit according to the manufacturer's
instructions (Invitrogen).

Constructs and transduction
Irf3, Tbk1, Ikke, Sting-HA, IRF3-Egfp, and IRF3A7-Egfp were

subcloned into the pMSCV2.2-IRES-Gfp vector (gift of Dr. Sha,
University of California, Berkeley, CA). Wild-type (WT) and
mutant Sting fibroblasts were kindly provided by Dr. Vance
(University of California, Berkeley, CA). Retroviral superna-
tants were generated as described in (17). Short hairpin RNA
(shRNA) constructs were cloned into the MSCV/LTRmiR30-
PIG vector (Open Biosystems; See Supplementary data).

Quantitative real-time reverse transcription PCR
Quantitative real-time reverse transcription (RT)-PCR was

performed as described previously (6).

Western blotting
Whole cell extracts were electrophoresed in 10% or 4% to

20% SDS-PAGE gels and blotted onto nitrocellulose mem-
branes (BioRad). Antibodies against IRF3, IRF3pS396, TBK1,
TBK1pS172, ATM, ATMpS1981 (Cell Signaling Technology),
BCL2L12 (clone E-13; Santa Cruz), and glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH; Sigma) and horseradish per-
oxidase–coupled second stage reagents were used (Thermo).
Blots were exposed on X-ray film (Fuji); densitometry analysis
was performed using ImageJ-1.46r.

Flow cytometry
The following antibodies were used: pan-RAE1, RAE1abg ,

RAE1bd, RAE1e (R&D Systems), B220-PerCP, IgM-APC, CD16/
CD32, MHC class II (eBioscience), rabbit-anti-phospho-IRF3-
Ser396 or rabbit-anti-phospho-TBK1-Ser172 (Cell Signaling
Technology), and rat IgG-APC (eBioscience) or rabbit IgG-
Alexa-488 (Invitrogen). Propidium iodide (PI, 1 mg/mL) was
added to all stainings, and PI-negative cells are shown. For
intracellular staining, cells were fixed according to the man-
ufacturer's protocol. Some cells were treated with 2 U/mL
l-phosphatase (New England Biolabs) at 37�C for 90 minutes
before staining. Stained cells were analyzed using FACSCalibur
and FlowJo 8.8.7 (Treestar). Bromodeoxyuridine incorporation
analysis was performed as described (18).

Microscopy
Cells were fixed and stained for DNA according to the

manufacturer's instructions (Millipore). A detailed protocol is
provided in the Supplementary data.

CD107a degranulation assay and in vitro NK cell
stimulation

Performed as described in refs. 4 and 19.

Statistical analyses
Groups were compared using two-tailed unpaired t tests

(Prism; 5.0c; GraphPad). Survival was represented by Kaplan–
Meier curves, and statistical analysis was performed with the
log-rank Mantel–Cox test.

Results
IRF3 isnecessary forRAE1expression in response toDNA
damage

IRF3 has previously been shown to be activated in response
to DNA damage (20, 21). We therefore investigated the role of
IRF3 in the expression of NKG2DLs in cells exposed to DNA
damaging agents. Phosphorylation of serine 396 (S388 of
mouse IRF3) has been shown to be critical for the activation
of IRF3 (22). Phosphorylation of IRF3S388 increased after
treatment with DDR-inducing agents Ara-C or aphidicolin,
although not to the same degree as LPS, a known inducer of
IRF3 (Fig. 1A and B; Supplementary Fig. S1A; ref. 23). The late
kinetics of IRF3S388 phosphorylation were similar to kinetics
previously observed for DNA damage–induced upregulation of
NKG2DLs (6). Notably, treatment of BC2 cells with Ara-C also
induced activated IRF3 characterized by nuclear translocation
of endogenous IRF3 (Fig. 1C) and overexpressed chimeric IRF3-
GFP (Fig. 1D and E), consistent with previous reports (20, 21).
No nuclear translocation was observed with a mutant form of
IRF3 (IRF3A7-GFP) that is unable to be activated (Fig. 1D and
E). Treatment of BC2 cells with Ara-C or aphidicolin induced
expression of several IRF3 target genes to a similar or greater
extent than Poly I:C, an established IRF3 activator, suggesting
that IRF3 is transcriptionally active in response to DNA dam-
age (Fig. 1F and G).

To test whether IRF3 is required for DDR-mediated upre-
gulation of NKG2DLs, we transduced BC2 cells with an Irf3-
specific shRNA (Supplementary Fig. S1B). Compared with

Lam et al.

Cancer Res; 74(8) April 15, 2014 Cancer Research2194

on September 12, 2014. © 2014 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst March 3, 2014; DOI: 10.1158/0008-5472.CAN-13-1703 

http://cancerres.aacrjournals.org/


DMSO 

Ara-C  

Aphidicolin 

Poly I:C 4 h 

Poly I:C 20h  

BC2 Poly I:CAra-C      ATM/ATR I DMSO
ATM/ATR I

+ Ara-C

IRF3-

GFP/

DAPI

IRF3A7-

GFP/

DAPI

100

80

60

40

20

IRF3A7-GfpIRF3-Gfp

%
 o

f 
c
e
lls

 w
it
h

s
u
b
c
e
ll.

 l
o
c
a
liz

a
ti
o
n

0

D

E

DMSO

RAE1αβγ

RAE1βδ

BC2

F

B

R
e
l.
 m

R
N

A
 l
e
v
e
ls

%
 s

p
e
c
if
ic

 l
y
s
is

40

80

60

20

0

8

IFN-β

DMSO         Ara-C        Poly I:C

16

14

12

10

6

4

2

0

G

p
g
/m

l 
  
 

*
*

H

MHC class II

I

20

80

60

10

0

1:1             3:1            10:1

E:T

50

40

30

70

RAWBC2 C IRF3

IRF3/DAPI IRF3

IRF3/DAPI

IRF3

GAPDH

IRF3pS388

Ara-C

A TLR3 agonist Ara-C Aphidicolin

5 h

10 h

15 h

IRF3pS388

ND

Ctrl
Treated

Ctrl shRNA Irf3 shRNA

DMSO DMSOAra-C Ara-C

19±1

26±4

58±6

26±2

23±3

47±4

12±1

12±2

  68
±12

  23
±15

18
±5

 11
±3

579
±62

585
±83

10 μm

10 μm 10 μm 10 μm 10 μm 10 μm

10 μm 10 μm 10 μm 10 μm 10 μm

10 μm

Figure 1. IRF3 is activated and necessary for optimal induction of RAE1 ligands for NKG2D in response to DNA damage. A, phosphorylation of IRF3S388 in
BC2 cells treated with 10 mmol/L Ara-C, 4 mmol/L aphidicolin, 1 mg/mL ODN1585 (red line), or DMSO (blue line) was analyzed by intracellular flow
cytometry at indicated time points. Filled histograms, isotype staining of Ara-C–treated cells. Mean fluorescence intensity (MFI) �SD are shown. B,
phosphorylation of IRF3S388 after 16 hours of 10 mmol/L Ara-C or DMSO treatment was analyzed by Western blotting. RAW 264.7 cells were
treatedwith LPS for 4hours. C, nuclear translocalizationof endogenous IRF3 (red) inBC2cells treatedwith 10mmol/LAra-C for 16hours andstained for IRF3 in
the presence of DAPI (blue). D and E, BC2 cells expressing IRF3-Gfp or IRF3A7-Gfp were treated with 10 mmol/L Ara-C, 10 mg/mL Poly I:C, or
DMSO for 16 hours. Some cells were pretreated with 10 mmol/L of the ATM/ATR-specific inhibitor CGK733. Localization of IRF3 in DAPI-stained cells was
analyzed by fluorescent microscopy (D). Quantification of BC2 cells with nuclear (white bar; >90% nuclear), partial nuclear (gray bar; 10%–90%
nuclear) and cytosolic (black bar; <10% nuclear) localization of IRF3 (E). F, BC2 cells were treated with DMSO (white bar), 10 mmol/L Ara-C (light-gray bar), 4
mmol/L aphidicolin (gray bar), 1 mg/mL Poly I:C for 20 hours (black bar), or 1 mg/mL Poly I:C for 4 hours (dark-gray bar). Relative mRNA levels of IRF3
target genes were measured by qRT-PCR. Means�SD of three independent experiments normalized to DMSO-treated cells are shown. G, levels of IFN-b in
supernatants of 0.75�106BC2cells/mL treatedwithDMSO,10mmol/LAra-C, or 1mg/mLPoly I:C for 24 hourswere determinedbyELISA. �,P<0.05.H, RAE1
expression in Irf3-specific (red line) or control (blue line) shRNA-transduced BC2 cells, which were cultured for 5 days in puromycin before treatment
with 10 mmol/L Ara-C for 16 hours. DMSO-treated Irf3 (dashed line) or control (dotted line) shRNA-transduced cells are also shown. Filled histograms, isotype
staining of Ara-C–treated cells. MFI �SD are indicated. I, IL-2–activated NK cells were cocultured with Irf3-specific (circles) or control shRNA-transduced
(squares) BC2 cells in the presence of NKG2D-blocking antibodies (open symbols) or IgG2a isotype control antibodies (filled symbols) and treated with 10
mmol/L Ara-C (red) or DMSO (black) for 16 hours. The effector (E) to target (T) ratio is indicated. Results �SD of three
independent experiments are shown.
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control shRNA, Irf3-specific shRNA significantly inhibited the
upregulation of RAE1 ligands of NKG2D, but not MHC class II,
in response to Ara-C (Fig. 1H). Bimodal expression of RAE1 is
likely to reflect specific activation of the DDR in S-phase of the
cell cycle. No consistent effectswere observed for theNKG2DLs
MULT-1 and H60, suggesting that their upregulation in res-
ponse to DNA damage requires additional signals.

To address whether IRF3-induced RAE1 expression renders
cells more sensitive to NK cell–mediated lysis, Irf3-specific and
control shRNA-transduced cells were culturedwith interleukin
(IL)-2–activated NK cells. BC2 cells transduced with Irf3-spe-
cific shRNA were less sensitive to NK cell–mediated cytotox-
icity in response to Ara-C treatment than control shRNA-
transduced BC2 cells (Fig. 1I). The sensitivity of Irf3-shRNA–
transduced BC2 cells was similar to control shRNA-transduced
BC2 cells treated with Ara-C in the presence of NKG2D-
blocking antibodies, suggesting that decreased lysis of Irf3-
shRNA–transduced cells was due to reduced RAE1 expression.

IRF3 is required for constitutive RAE1 expression
in Yac-1 cells

The DDR is constitutively activated in many tumor cell lines
and precancerous lesions (24). In agreement, phosphorylation
of IRF3S388 was detected in EmM1 cells and Yac-1 lymphoma
cells (Fig. 2A). Endogenous IRF3 (Fig. 2B) and exogenous
chimeric IRF3-GFP (Fig. 2C) were partially localized to the
nucleus, indicating that a subset of IRF3 is activated in EmM1
and Yac-1 cells. In contrast, IRF3A7 exhibited exclusively
cytosolic localization in Yac-1 cells. Inhibition of IRF3 expres-
sion in EmM1 and Yac-1 cells by shRNA decreased the expres-
sion of IRF3 target genes (Fig. 2D and E), Raet1 transcripts
(Supplementary Fig. S1C), andRAE1 cell surface levels (Fig. 2F).
Mouse strains were found to express different RAE1 isoforms
and the cell lines used in this study vary in their genetic
background (see Supplementary Materials and Methods;
ref. 25). The incomplete reduction of cell surface RAE1 expres-
sion by Irf3-specific shRNAsmay reflect incomplete turnover of
preformed RAE1 or incomplete knockdown of IRF3 (Supple-
mentary Fig. S1B).

TBK1 is necessary for RAE1 expression in response to
DNA damage

IRF3 is activated by the IKK-related serine/threonine
kinases TBK1 and IKKe (10). We therefore tested whether
TBK1was phosphorylated in response toDNA damage. Similar
to results with IRF3, substantial phosphorylation of TBK1 on
serine 172 was detected after 15 hours of treatment with Ara-C
or aphidicolin, although the activation was weaker than TBK1
phosphorylation in response to LPS (Fig. 3A and B; Supple-
mentary Fig. S2A). No Ikke expressionwas detected in BC2 cells
(data not shown).

Transduction of BC2 cells with the TBK1 inhibitor Sike
caused substantial reduction in RAE1 expression in response
to DNA damage (Fig. 3C). Similarly, BC2 cells transduced with
Tbk1-specific shRNA expressed less transcripts and RAE1 at
the cell surface in response to Ara-C (Fig. 3D; Supplementary
Fig. S2B). Tbk1- and Ikke-deficient MEFs failed to upregulate
RAE1 in response to Ara-C (Fig. 3E). Genetic reconstitution of

Tbk1�/�;Ikke�/� MEFs with Tbk1 or Ikke was sufficient to
induce RAE1 expression on a fraction of cells and to restore the
capacity of cells to upregulate RAE1 in response to Ara-C (Fig.
3E). The induction of RAE1 in untreated cells is likely a
consequence of overexpression of Tbk1 or Ikke, which has
been shown to result in unregulated activation of the pathway
(26). In summary, the data suggest that TBK1 is required for
induction of RAE1 in response to DNA damage in BC2 cells.

TBK1 is required for constitutive RAE1 expression
Similarly to IRF3, constitutive phosphorylation of

TBK1S172 was detected in Yac-1 and EmM1 cells (Fig. 3F).
Transduction of Sike into Yac-1 cells caused reductions in
RAE1 levels (Fig. 3G). Expression of a Tbk1-specific shRNA in
Yac-1 cells decreased the amount of Raet1 transcripts, and a
significant but less complete reduction in RAE1 at the cell
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surface (Fig. 3H and I). No Ikke transcripts were detected in
Yac-1 cells (data not shown).

Phosphorylation of IRF3 and TBK1 depends on the DDR
Treatment of cells with Ara-C results in DNA breaks and the

activation of ATR and ATM (27). To address the role of ATM

and ATR in the activation of TBK1 and IRF3, we blocked ATM
and ATR function with different chemical inhibitors. Attempts
to efficiently block both ATM and ATR by shRNA were not
successful. Induction of RAE1 expression in BC2 cells by Ara-C
was inhibited by the combined treatment of cells with ATM
and ATR inhibitors (Fig. 4A; Supplementary Fig. S3A).
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(fine line). Filled histograms, isotype staining of DMSO-treated cells. B, immunoblot analysis of TBK1S172 phosphorylation in 10 mmol/L Ara-C (14 hours)
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(dashed line) are shown. F, levels of TBK1S172 phosphorylation in Yac-1 cells were analyzed by intracellular flow cytometry (fine line). Some cells
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(bold line) or empty vector–transduced Yac-1 cells (fine line) 10 days posttransduction. Filled histogram, isotype stainings of Sike-expressing cells.
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Inhibition of ATM and ATR also impaired TBK1 and IRF3
phosphorylation (Fig. 4B and C; Supplementary Fig. S3B) and
nuclear localization of chimeric IRF3-GFP (Fig. 1D and E) in
Ara-C–treated BC2 cells. The effects of ATM or ATR inhibition
on RAE1 expression and phosphorylation of TBK1 and IRF3
were less pronounced, suggesting that ATM and ATR act
redundantly (Fig. 4A–C).

Inhibition of ATR impaired constitutive RAE1 expression and
phosphorylation of TBK1 and IRF3 in Yac-1 cells (Fig. 4D and E,
Supplementary Figs. S3C and S3D). Nuclear localization of IRF3-
GFP in Yac-1 cells was also suppressed by inhibition of ATR and
ATM (Fig. 4F). Thus, activation of TBK1 and IRF3 in Yac-1 cells
depends on ATR, suggesting that ATR activates DNA damage,
which preferentially activates ATR, is present in Yac-1 cells (28).

Accumulation of cytosolic DNA depends on the DDR
Recognition of cytosolic DNA by DNA sensors activates

TBK1 and IRF3 (8). To test whether DNA damage leads to
appearance of cytosolic DNA, we stained cells with antibodies

specific for single-stranded (ss) DNA or double-stranded (ds)
DNA (Supplementary Fig. S4A). The specificity of the DNA
staining was verified by pretreating cells with S1 nuclease to
degrade ssDNA or DNase I to digest dsDNA before staining
(Supplementary Figs. S4B and S4C). All cells were treated with
RNase before staining. Strikingly, we found that ssDNA and
dsDNA was present in the cytosol of BC2 cells in response to
Ara-C treatment and cytosolic DNA was constitutively present
in Yac-1 cells (Fig. 5A and B). To substantiate the presence of
DNA in the cytosol of cells, we stainedBC2cellswithPicoGreen,
a vital dsDNA-specific dye (Supplementary Fig. S4D). In agree-
ment with the dsDNA-specific antibody stainings, PicoGreen
staining showed the presence of cytosolic dsDNA in Yac-1 and
Ara-C–treated BC2 cells (Fig. 5C; Supplementary Figs. S5A and
S5B). To exclude the possibility that cytosolic DNA represents
mitochondrial DNA, we costained cells with mitochondria-
specific MitoTracker dye or the mitochondrial marker COX-
IV (Fig. 5C, Supplementary Figs. S4–S6). As Ara-C disrupted
MitoTracker staining, we treated BC2 cells with aphidicolin, an
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inhibitor of nuclear DNA synthesis that activates the DDR but
does not affect replication of mitochondrial DNA (Fig. 5C;
Supplementary Fig. S4D; ref. 29). Three-dimensional rendering
of confocalmicroscopy data showed thatmost cytosolicDNA is
present outside of mitochondria in Yac-1 and Ara-C–treated
BC2 cells (Fig. 5C; Supplementary Figs. S4D and S5).
To test whether the DDR influences the occurrence of

cytosolic DNA, we pretreated BC2 cells with ATM and/or ATR
inhibitors before treatment with Ara-C. Blocking of ATM and
ATR prevented appearance of cytosolic DNA in response to
Ara-C (Fig. 5A; Supplementary Fig. S6A). Strikingly, cytosolic
DNA present in Yac-1 cells disappeared after inhibition of ATR
for 14 hours (Fig. 5B; Supplementary Fig. S6B). Inhibition of
ATM had a less pronounced effect on the occurrence of
cytosolic DNA in agreement with effects observed on RAE1
expression and phosphorylation of IRF3 and TBK1 (Fig. 5A and
B).However, the disappearance of cytosolic DNA in response to

inhibition of ATM and ATR did not abrogate RAE1 expression
in Yac-1 cells, suggesting that RAE1 expression is regulated by
additional pathways (25). In summary, our data suggest that
appearance of cytosolic DNA depends on the DDR and is
rapidly turned over.

Cytosolic DNA induces RAE1 expression
To test whether cytosolic DNA induces RAE1 expression in

BC2 cells, we transfected cells with Alexa-488–labeled plasmid
DNA, genomic DNA, or ssDNA. We were unable to purify
sufficient quantities of cytosolic DNA to determine whether
cytosolic DNA present in Ara-C–treated BC2 cells directly
induces RAE1 expression. Alexa-488–positive BC2 cells upre-
gulated expression of RAE1, although to a lesser degree than
Ara-C–treated cells (Fig. 6A).

The presence of DNA in the cytosol activates STING-depen-
dent DNA sensors, leading to the activation of TBK1 and
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the dsDNA-specific dye PicoGreen (green) for 1 hour and MitoTracker dye (red) for 15 minutes. Z-stack images were acquired by confocal microscopy
and analyzed using Imaris software to generate iso-surface plots. White arrows, presence of cytosolic DNA.

Linkage of RAE1 Expression and PRR Pathways

www.aacrjournals.org Cancer Res; 74(8) April 15, 2014 2199

on September 12, 2014. © 2014 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst March 3, 2014; DOI: 10.1158/0008-5472.CAN-13-1703 

http://cancerres.aacrjournals.org/


IRF3 (8). We therefore tested whether STING is necessary for
RAE1 expression in cells exposed to genotoxic stress. MEFs
harboring a loss-of-function Sting mutation failed to upregu-
late RAE1 in response to Ara-C (Fig. 6B). Reconstitution of Sting
expression resulted in restored inducibility of RAE1 in the cells.
Furthermore, RAE1 induction by Ara-C was impaired in BC2
cells expressing a Sting-specific shRNA (Fig. 6C) and Sting
inhibition in Yac-1 cells resulted in reduced constitutive RAE1
expression (Fig. 6D).

Next, we tested the requirement in RAE1 induction for one
candidate STING-dependent DNA sensor, ZBP/DAI, that acti-
vates IRF3 (8). Knockdown of Zbp1/Dai partly inhibited
the upregulation of RAE1abg in response to Ara-C, but had
little effect on RAE1bd (Fig. 6C). In contrast, knockdown of
Zbp1/Dai modestly inhibited RAE1bd but not RAE1abg
expression in Yac-1 cells (Fig. 6D). Inhibition of Rig-I, a RNA
sensor that may indirectly mediate responses to cytosolic
DNA, had no effect on RAE1 expression in BC2 or Yac-1 cells
(Fig. 6C and D). Hence, DNA sensors other than ZBP1/DAI
are likely to participate in inducing RAE1 expression in re-
sponse to DNA damage, in line with other evidence suggesting
the existence of DNA sensors that act redundantly (30). Taken
together, these data suggest that cytosolic DNA sensor path-
ways regulate RAE1 expression in cells exposed toDNAdamage.

IRF3 regulates RAE1 expression in B-cell lymphomas of
Em-Myc mice

To address whether IRF3 regulates RAE1 expression in
lymphomas, Irf3-deficient mice were bred to mice overexpres-
sing c-Myc under the control of immunoglobulin heavy-chain
enhancer region (Em), analogous to human Burkitt lymphoma
(31). Spontaneous B220low B-cell lymphomas develop by 15 to
20 weeks of age and the progression of lymphomas is accel-
erated in NKG2D�/�;Em-Myc mice (4, 32). Tumor cells in Em-
Myc mice express phosphorylated ATM (ATMpS1981; Fig. 7A;
ref. 19). Staining of tumor cells with a dsDNA-specific antibody
revealed the presence of cytosolic dsDNA in B220low tumor
cells, but not normal B220þ B cells (Fig. 7B). The accumulation
of cytosolic DNA was strictly dependent on the DDR as
administration of the ATM inhibitor KU55933 resulted in
reduced levels of cytosolic dsDNA (Fig. 7C). Irf3þ/�;Em-Myc
mice (median survival ¼ 62 days) experienced a significantly
reduced survival rate compared with Irf3þ/þ;Em-Myc mice
(median survival ¼ 116 days; Fig. 7D). We were not able to
generate Irf3�/�;Em-Myc mice because Irf3þ/�;Em-Myc mice
failed to breed. Heterozygosity of Irf3 in Em-Mycmice resulted
in 2.5-fold decrease of IRF3 levels and reduced expression of
IRF3 target genes in splenic B-cell lymphomas when compared
with Irf3þ/þ;Em-Myc mice, suggesting that cytosolic DNA in
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indicated IRF3 target genes in purified tumor cells of Irf3þ/�;Em-myc and Irf3þ/þ;Em-Myc mice were measured by qRT-PCR. F, RAE1e expression
in tumor cells of three Irf3þ/�;Em-Mycmice. B220low cells in blood of moribund Irf3þ/�;Em-Myc, Irf3þ/þ;Em-Myc, and C57BL/6 mice (bold line) were stained for
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transduced cells. Fine line, isotype staining of IRES-Gfp–transduced cells. Filled histograms, isotype staining of untransduced cells. H, IL-2–activated
NK cells derived from Irf3þ/�;Em-Myc (white squares, n ¼ 8) or Irf3þ/þ;Em-Myc (black circles, n ¼ 7) mice were cocultured with Yac-1 cells at an effector
to target ratio of 3:1. After 4 hours, the percentage of CD107a and IFN-g–expressing NK1.1þCD3� cells was determined by flow cytometry
(left and middle). Freshly isolated splenocytes of Irf3þ/�;Em-Myc (white squares, n ¼ 4) and Irf3þ/þ;Em-Myc (black circles, n ¼ 4) mice were stimulated
in vitro for 5 hours on plates coated with NKG2D-specific antibodies (MI-6, 10 mg/mL) or isotype control (10 mg/mL) before staining and analysis. Intracellular
IFN-g was detected by flow cytometry gated on NK1.1þCD3� cells (right). Error bar denotes SE of mean.
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lymphomas activates IRF3 (Fig. 7A and E). Importantly,
reduced levels of IRF3 in lymphomas impaired RAE1e expres-
sion, the only RAE1 family member detected in Em-Myc tumor
cells (Fig. 7F; ref. 33).

The null mutation introduced into the Irf3 allele also
resulted in functional inactivation of the neighboring Bcl2l12
gene, which promotes or suppresses tumorigenesis depending
on the cellular context (34, 35). However, heterozygosity of the
gene-targeted locus did not result in reduced BCL2L12 levels or
changes in the rate of apoptosis or proliferation of lymphomas
(Supplementary Figs. S7A and S7B; Fig. 7A). Overexpression of
Bcl2l12 in BC2 and EmM1 cells, two cell lines derived from Em-
Myc mice, had no effect on RAE1 expression, proliferation, or
apoptosis (Fig. 7G; Supplementary Figs. S7C and S7D). We
previously found that NK cells and T cells contribute to
immunosurveillance in Em-Myc mice (18). However, Irf3 defi-
ciency had no impact on NK- and T-cell numbers or NK cell
activity (Fig. 7H; ref. 36). In summary, our data suggest that
RAE1 ligands are regulated by IRF3 in lymphomas of Em-Myc
mice. Interestingly, IRF3 is likely to have additional functions in
immunosurveillance as NKG2D deficiency increases the tumor
load of Em-Myc mice, but has no impact on survival (4).

Discussion
Our previous results provided evidence that the DDR acti-

vates immune responses by inducing NKG2DLs (6). Here, we
show that cytosolic DNA contributes to the induction of RAE1
expression in lymphoma cells in response to DNA damage for
the following reasons: (i) inhibition of the DDR impaired the
induction of cytosolic DNA and RAE1 molecules; (ii) transfec-
tion of DNA into cells upregulated RAE1 expression; (iii)
inhibition of STING, TBK1, or IRF3 impaired RAE1 expression;
(iv) TBK1 and IRF3 were activated in response to DNA damage
in a DDR-dependent manner; and (v) overexpression of TBK1
or IKKe induced RAE1 expression.

Linking the DDR to STING-initiated pathways is of interest
immunologically, because STING is a critical component of a
major pathway common to receptors that detect cytosolic
DNA and RNA of pathogens (8). Previous studies provided
indications that the DDR induces phosphorylation of IRF3 and
that certain Toll-like receptor agonists induce Raet1 gene
expression in peritoneal macrophages (37), but the linkage of
these pathways had not been explored. Much remains to be
determined about the relation of the DDR and STING path-
ways. We observed less phosphorylation of IRF3 in response to
DNA damage when compared with LPS, suggesting that IRF3
translocation and transcriptional activity is differentially reg-
ulated in response to DNA damage. Consistent with this
possibility, Noyce and colleagues reported that no minimal
posttranslational modification of IRF3 correlated with its
transcriptional activity (38). Of interest was that DNA damage
consistently led to lower induction of IFN than Poly I:C. The
reduced induction likely reflects the fact that the DDR failed to
induce IRF7 activation, which is necessary for efficient tran-
scription of IFN genes (data not shown).

Cytosolic DNA has been shown to be present in cells upon
infection or the uptake of apoptotic cells (8). Our data show the

presence of cytosolic DNA in uninfected lymphoma cell lines.
An intriguing question is where cytosolic DNA originates from
and the mechanism leading to cytosolic DNA in tumor cells.
DNA damage is known to induce transcription of retroele-
ments, including transposases, derived from functional endog-
enous retrovirus present in the genome (39). Alternatively,
cytosolic DNA could be generated during DDR-dependent
DNA repair that can result in deletion of genomic DNA.

An important question is the nature of the DNA sensor
recognizing the cytosolic DNA. The induction of RAE1 by
Ara-C partially relied on ZBP1/DAI. ZBP1/DAI is a candidate
sensor that is reported to activate TBK1/IRF3 (40). However,
additional TBK1-activating DNA sensors exist as MEFs from
Zbp1�/�-deficient mice mount a normal type I IFN response
to DNA (18, 30). These sensors may be required for consti-
tutive RAE1 expression in Yac-1 cells. Hence, unidentified
DNA sensors may play a predominant role in YAC-1 cells, or
may function redundantly with ZBP1/DAI, in the induction
of RAE1.

NKG2D plays an important role in immunosurveillance of
tumors in Em-Mycmice (4, 5). The accelerated development of
lymphoma in Irf3/Bcl2l12þ/�;Em-Myc mice when compared
with NKG2D-deficient mice suggests that IRF3 induces the
expression ofmolecules other than RAE1 ligands important for
immunosurveillance or suppression of tumorigenesis. IRF3
and BCL2L12 are known to induce genes implicated in apo-
ptosis (11). However, we observed no differences in the rates of
apoptosis or proliferation comparing WT and heterozygous
tumor cells, suggesting that accelerated tumorigenesis of Irf3/
Bcl2l12þ/�;Em-Myc mice is not due to effects of IRF3 or
BCL2L12 on apoptosis or proliferation. In summary, our data
suggest that tumorigenesis leads to accumulation of cytosolic
DNA and subsequent activation of an antitumor immune
response that may partially depend on NKG2D.
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