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has generated a meaningful neuronal signal.
Presynaptic excitatory effects of nicotine involving

presynaptic [Ca2�]i were first shown at interpeduncular
nucleus synapses by McGehee et al. (1995) and at
mossy fiber synapses by Gray et al. (1996). The study
by Sharma and Vijayaraghavan reports four importantCan a Synaptic Signal
results: (1) nicotine dramatically increases the frequencyArise from Noise?
of occurrence of miniature excitatory postsynaptic cur-
rents (mEPSCs) recorded under voltage clamp from
postynaptic neurons, (2) a new class of very large
mEPSCs appears, (3) both effects depend upon Ca2�

The spontaneous fusion of vesicles at nerve terminals
influx through nAChRs and Ca2�-induced Ca2� releaseproduces random miniature postsynaptic potentials
(CICR) from ryanodine-sensitive intracellular Ca2�

(quantal responses) that are thought to have little func-
stores, and (4) the high-frequency barrage of mEPSCs—tional significance. In this issue of Neuron, Sharma
including large mEPSCs—depolarizes pyramidal cellsand Vijayaraghavan provide evidence that exogenous
sufficiently to induce intense firing, transmitting a “sig-signals can accelerate and synchronize the occur-
nal” across the synapse.rence of quanta strongly enough to activate postsyn-

Perhaps the most remarkable finding relates to theaptic neurons in what may be a new way to transfer
nicotinic enhancement of the release of very largeinformation across synapses.
mEPSCs, up to 200 pA or 3 times the largest minis
seen under control conditions. Henze et al. (2002) have

It was over 50 years ago that Paul Fatt and Bernard Katz
described occasional even larger “giant” minis (up to

(Fatt and Katz, 1950, 1952) first observed the random 1.7 nA), which are probably due to the release of giant
release of transmitter packages, which they called vesicles. The giant minis are unaffected by changes in
“quanta,” at the frog neuromuscular junction. Originally external [Ca2�], unlike the large minis studied by Sharma
mistaken for the footsteps of A.V. Hill, who was wont in and Vijayaraghavan (2003), suggesting that the two are
those days to pace the corridors of University College distinct. An important question is whether the large minis
London, quanta were too large to reflect leakage of Sharma and Vijayaraghavan observe are indeed multi-
single molecules of acetylcholine, and local nerve termi- quantal, as they do not show some features characteris-
nal spikes were proposed. It didn’t take long for Fatt tic of multiquantal release at other synapses, including
and Katz (1953) to recognize that the electrical events the telltale periodic peaks in amplitude histograms pre-
they recorded from muscle fibers corresponded to the viously described in the multiquantal mEPSCs in cere-
spontaneous release of multimolecular packets of trans- bellar mossy fiber to granule cell synapses (Wall and
mitter, independent of presynaptic electrical activity. Usowicz, 1998) and periodic notches on their rising
Once synaptic vesicles were described using the elec- phase. They do, however, show the dependence on
tron microscope, it was natural to suppose that these CICR of mIPSCs recorded from Purkinje cells (Llano et
were the packets of transmitter-comprising quanta al., 2000). The strongest evidence presented for multi-
(Castillo and Katz, 1955). Quantal responses were a nat- quantal minis is a correlation between amplitude and
urally occurring synaptic noise, which subsequently rise time that might reflect near coherence of quantal
proved quite valuable in analyzing mechanisms of trans- units. Alternative explanations for this correlation might
mitter release at synapses. These miniature endplate be postsynaptic receptor saturation, or spillover to adja-
potentials (mEPPs), or miniature excitatory or inhibitory cent postsynaptic densities, by large uniquantal minis.
synaptic potentials (mEPSPs or mIPSPs) as they are However, the “giant” minis should be even more blunted
called when they are recorded from central neuronal by such saturation, or broadened by spillover, which
synapses, provided a marvelously useful tool for probing seems not to be the case (Henze et al., 2002), making
synaptic function. They formed the foundation for a lively these alternative explanations less likely. Further experi-

ments that would strengthen the case for multiquantalcottage industry of “quantal analysis” that has occupied
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Figure 1. Schematic of Three Possible Ori-
gins of Multiquantal Minis

(A) Multiple vesicle fusions at one active zone.
(B) Synchronous release from neighboring
active zones.
(C) Compound vesicle fusion.
Abbreviations: Ca2�, calcium ions; ER, endo-
plasmic reticulum; RyR, ryanodine receptor;
PM, plasma membrane; nAChR, nicotinic
acetylcholine receptor; V, vesicles; ACh, ace-
tylcholine.
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confocal scanning microscopy or two-photon scanning
microscopy (Emptage et al., 2001; Llano et al., 2000),
and correlating them with the occurrence of large minis
might provide further mechanistic insight into how they
arise.

Beyond mechanism lies the further question of function. Ocular Dominance PlasticitySharma and Vijayaraghavan showed that enhancement
of mini frequency, and apparent synchronization, can in Mature Mice
together have a strong effect on a postsynaptic cell,
driving it to fire a prolonged high-frequency burst in
response to focal application of 20 �M nicotine. It will

Ocular dominance plasticity, classically thought to bebe important to determine whether a presynaptic action
restricted to an early critical period, is now describedof acetylcholine in exciting synaptic transmission occurs
by Sawtell et al. in fully adult mice. Adult plasticity,with endogenous cholinergic input. It will be also be
like critical period plasticity, requires cortical NMDAinteresting to find out whether nicotine levels occurring
receptors but involves different functional changes inin smokers have similar effects and whether this contrib-
cortical circuits.utes to nicotine toxicity. If such a mechanism for gener-

ating a meaningful synaptic signal out of quantal noise
can be shown to occur in vivo in a physiologically rele- Much of our understanding of how sensory experience
vant context, it will provide an important addition to the shapes circuit function derives from the study of ocular
repertoire of mechanisms of neuronal plasticity. dominance in primary visual cortex (V1). Ocular domi-

nance is the relative response of a neuron to visual
stimulation of the right versus the left eye. As first shown
in the cat and monkey, closing one eye for a brief periodRobert S. Zucker

Division of Neurobiology (monocular deprivation, MD) causes a lasting shift in
ocular dominance toward the open eye (Hubel, 1982).Department of Molecular and Cell Biology

University of California, Berkeley In these classic experiments, plasticity occurred only
when MD was begun during a narrow age range in theBerkeley, California 94720


