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Review

Pre-BCR signals and the control of Ig gene rearrangements
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Abstract

Progenitor B lymphocytes that successfully assemble a heavy chain gene encoding an immunoglobulin capable of pairing with surrogate light
chain proteins trigger their own further differentiation by signaling via the pre-BCR complex. The pre-BCR signals several rounds of proliferation
and, in this expanded population, directs a complex, B cell-specific set of epigenetic changes resulting in allelic exclusion of the heavy chain locus
and activation of the light chain loci for V(D)J recombination.
© 2005 Elsevier Ltd. All rights reserved.
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. Introduction

B cell differentiation is a highly dynamic process that requires
he coordinated action of various receptors, signaling molecules,
ranscription factors and the V(D)J recombinase. Completion of
mmunoglobulin heavy chain (�HC) gene rearrangement leads
o surface expression of the pre-BCR complex which triggers

cascade of signaling events that alters the developing cell’s
esponse to growth factors and effects transcription and DNA
earrangement.�HC expression results in pre-B cell expansion
nd inhibits further rearrangement at the�HC locus, a process
nown as allelic exclusion. Pre-B cells subsequently exit the
ell cycle and initiate of a second set of gene rearrangements
t the immunoglobulin light chain (IgLC) loci. The timing of
NA rearrangements, which involve the generation and repair
f DNA double stranded breaks interspersed with bursts of pro-

iferative expansion, must be tightly regulated to ensure proper
evelopment and to prevent genomic instability and leukemic

ransformation. This review will focus on the function of the
re-BCR as the critical regulator of the pre-antigenic phase of
cell development.

a membrane complex with the surrogate light chain compon
(SLC) VpreB and�5, and the transmembrane proteins Ig-� and
-�. Signaling through this receptor is associated with its inte
ization and degradation[1–3]. The cytoplasmic domains of Ig�
and -� contain immunoreceptor tyrosine-based activation m
(ITAMs) which, when clustered in the membrane, provid
docking site for the Syk kinase, Src family kinases (Fyn, Lyn,
Blk), the Tec family kinase, Btk, and the adaptor proteins G
and BLNK. BLNK (also known as BASH and SLP-65) recru
Btk, which is then phosphorylated by Lyn, Syk, or both[4,5].

Phosphorylated Btk then phosphorylates PLC�2, which
hydrolyzes PIP2 to IP3 and diacylglycerol (DAG) causing ca
cium mobilization and resulting in activation of calcium dep
dent enzymes (reviewed in[6]). Proliferation is induced via ac
vation of MAP kinase pathways, and allelic exclusion is impo
by a presently undefined mechanism[7,8]. Upon pre-BCR sig
naling, cells initially undergo a proliferative burst accompan
by down regulation of SLC components and RAGs, followe
exit from the cell cycle and transition from pro-B/large pre
I (Hardy fraction C) to small pre-B II (Hardy fraction C′) [9].
Signaling also induces transcription factors such as NF-�B, Spi-
. Pre-BCR signalling—an overview

Pre-BCR signaling is initiated upon expression of a clono-
le

B and IRF-4 as well as re-expression of RAGs, contributing to
activation of the� enhancers and� germline transcription and
rearrangement[10,11].
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. Pre-BCR signaling does not require exogenous ligand

Once the pre-BCR assembles on the cell surface, tyr
inase-dependent signaling begins. Ig-�/� heterodimer surfac
xpression facilitated by the�HC and SLC seems to be sufficie



32 J.K. Geier, M.S. Schlissel / Seminars in Immunology 18 (2006) 31–39

to initiate signaling. Truncation mutants that lack extracellular
domains can function to aggregate Ig-�/� and signal B cell dif-
ferentiation[12,13]. In fact, pro- to pre-B cell development can
be driven by the Ig-� and -� ITAMS (along with other conserved
cytoplasmic motifs) targeted to the inner leaflet of the plasma
membrane by fusion with a Lck myristoylation/palmitoylation
sequence[14]. These observations, along with the fact that a
single pre-B cell in the absence of any other stromal cells can
proliferate in response to pre-BCR expression[15], calls into
question the relevance of various extracellular ligands proposed
to interact with the pre-BCR. However, soluble recombinant
pre-BCR can bind stromal cells[16]. The Schiff group identi-
fied a human pre-BCR ligand, galectin-1, that may be involved
in receptor aggregation and activation of tyrosine kinase activ-
ity localized at the pre-BCR[3]. Another study by the J̈ack
lab implicated stromal heparin sulfate as a ligand for murine
pre-BCR [17] (see also contribution by Espeli et al. in this
issue). Recent data has revealed another potential mechanism
for pre-BCR signaling involving the SLCs. The conserved non-
immunoglobulin portions of�5 and VpreB may mediate con-
stitutive receptor aggregation, signaling and internalization via
homotypic ionic interactions[18]. Various truncated or unusu-
ally structured�HCs may inherently allow aggregation in an
SLC-independent fashion providing an explanation for the trun-
cated�HC transgene results mentioned above.

The absence of both Ig-� and -� causes a developmental
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tion [25], it is widely agreed that pre-BCR signaling is required
for the proliferative expansion of pre-B cells expressing a suc-
cessfully rearranged IgHC gene which can assemble with SLCs.
This proliferation signal induces two to five rounds of cell divi-
sion and eliminates the dependence of developing cells on IL-7
[15]. Pre-B cells are known to be cycling in vivo based on their
rapid incorporation of the nucleotide analog BrdU[1,26,27].
Transgenic IgHC expression induces proliferation in pro-B cells
cultured on stromal cells[28]. Targeted deletion of the Ig� mem-
brane exon or disruption of the SLC genes results in the failure
of pre-B cell proliferation[25].

The MAP kinase pathway is involved in pre-B cell expansion
and perhaps various aspects of differentiation as well. In mature
B cells, Ras signaling is induced upon BCR crosslinking[29,30].
Mice expressing a constitutively activated Ras mutant transgene
on a RAG-null background bypass the pre-BCR checkpoint and
contain almost normal numbers of B cells in their lymph nodes
and spleen[31]. These RAS-transgenic B cells are abnormal in
that they continue to express�5 and RAG2, which are normally
down-regulated upon pre-BCR signaling. Their� germline tran-
script levels are similar to those observed in wild-type pre-B
cells, but the transgenic cells also express some surface mark-
ers associated with more mature stages of B cell development.
When the activated Ras transgene is bred onto a RAG sufficient
but�JH background,� rearrangement is induced despite a lack
of HC expression[32]. The survival phenotype of Ras trans-
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rrest at the pro-B cell stage despite intact V(D)J recom
ion and�HC expression revealing the requirement for th
olecules in pre-BCR signaling[19,20]. One role of the ITAMs

s recruitment of BLNK to Ig-�. Fusing BLNK to a mutant Ig
lacking these tyrosines reconstitutes downstream sign

vents. Thus, simply the formation of the pre-BCR leadin
he membrane localization of Ig-� and -� is sufficient to trigge
re-BCR signaling, allow downregulation of RAGs and S
roteins, and upregulation of transcription factors that resu

gLC gene rearrangements.
The pre-BCR may serve yet another function, that of a mo

lar clock which eliminates B cell precursors that fail to gene
functional IgLC gene within a certain window of time or t
xpress a�HC that is incapable of associating with any Ig
[21,22]; see also contribution by C. Vettermann and H.-M. Jäck
n this issue). Pre-BCR signaling is associated with inte
zation and degradation of the pre-BCR[1–3]. Since the gene
ncoding the SLC components�5 and VpreB are inactivate
pon pre-BCR signaling[23], progressively less pre-BCR co
lex can form on the surface as cells divide, culminatin
educed proliferative signals. If a pre-B cell fails to make
gLC that associates with its�HC, then�HC expression o
he surface will eventually be lost, presumably leading to
ell’s arrested development and death[24]. The existence o
his clock may help protect the genome from RAG-assoc
enomic instability.

. Pre-BCR signals leading to proliferation

While there is debate as to whether the complete pre-BC
equired for IgHC allelic exclusion and pre-B cell differen
-

g

-

s

enic B cell precursors is similar to that of RAG-null B ce
xpressing transgenic�HC and Bcl-2. Indeed, levels of Bcl
re high in the activated Ras transgenic B cell precursors,
haracteristic of mature B cells[31] perhaps allowing surviva
n the setting of both proliferation and ongoing Ig� locus rear
angement.

Mice expressing a transgenic human dominant negative
-rasN17, show a developmental arrest at a stage corres

ng to Hardy fraction “A”. This was not attributable to increa
poptosis. Over-expression of a membrane targeted, an
onstitutively active, partner of Ras, Raf-1(Raf-CAAX),
he H-rasN17 background overcame the block confirming
nvolvement of this MAP kinase pathway in B cell developm
33]. Mimicking the pre-BCR signal with these transgenes d
ot, however, induce allelic exclusion since V-to-DJ rearra
ent proceeds despite the premature proliferation signal.
Thus, the MAPK pathway is necessary for proper pre-B

ignaling, and when activated can substitute for the pre-
ausing proliferative expansion, survival and� activation, bu
ot IgHC allelic exclusion, or�5 and RAG down-regulatio
hese experiments demonstrate the existence of two sep
re-BCR signaling pathways; one causing proliferation an

nduction of some transcription factors involved in differen
ion, and the other mediating allelic exclusion.

. Allelic exclusion

Allelic exclusion remains an enigmatic aspect of pre-B
ignaling. Preventing further�HC gene rearrangement in a c
hat already expresses a�HC is necessary to ensure that e

cell has an unique antigen specificity. It is imposed at
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VH-to-DJH step in recombination while D-to-JH rearrangement
is unaffected[34]. The ability of RAG proteins to selectively
act at different loci depending on the cell type or stage in devel-
opment has been attributed to regulated accessibility of each
rearranging locus within chromatin structure[35]. RAG proteins
cannot cleave a nucleosomal substrate in vitro, implicating the
necessity of some sort of chromatin remodeling to render the
DNA accessible to the recombinase[36–38]. The loci within
purified nuclei that are accessible to cleavage by RAGs in vitro
depend on the source of nuclei[39]. Thus, the accessibility of
rearranging loci is a cell-type and stage-specific property of chro-
matin structure. The accessibility of the IgHC locus changes
across the pro-B to pre-B cell transition, and pre-BCR signal-
ing induces a permanent loss of IgH locus accessibility. The
mechanism or signaling pathways employed for such chromatin
remodeling have not been delineated.

5.1. Requirements and signals

Surface expression of a�HC induces allelic exclusion and
mice carrying a mutation in the transmembrane region of the
�HC gene are unable to turn off IgHC gene segment rearrange-
ments[40]. Expression of a�HC transgene in mice prevents
endogenous VH-to-DJH rearrangements[41]. It is controversial,
however, whether SLC expression is required for IgHC allelic
exclusion. One group reported that targeted disruption of the
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expression amongst individual�HC genes could account for
the curious observation that some�HC transgenes allelically
exclude very stringently while others allow continuation of
D-proximal VH gene segment rearrangement[50]. Transgene
expression levels may also play a role.

D�, an endogenously generated truncated�HC protein
formed by translation of a partially rearranged (DH-to-JH) IgHC
allele[51] is also capable of signaling allelic exclusion. D� sur-
face expression blocks further development of B cell precursors,
a process known as D� selection[42,52–54]. This selection is
thought to occur when D� expression causes�HC gene allelic
exclusion, thus preventing the formation of a complete IgHC
gene[55,56]. Proliferation is impaired in the D� transgenic
mice, again pointing to different requirements for allelic exclu-
sion and proliferation. D� can cause increased germline� and
diminished�5 transcription, yet it cannot promote full differ-
entiation to the pre-B cell stage[56]. Considering that Ig-�, �5
and Syk are necessary for D� to signal, D� apparently forms a
pre-BCR-like complex, but due to the lack of VH structure, this
pseudo-pre-BCR fails to mimic essential aspects of the pre-BCR
signal and such cells eventually die from an inability to differ-
entiate perhaps due to ineffective pairing with IgLC[56,57].
Pairing of D� to the SLC could be qualitatively different, and
different requirements for the maturation and surface expression
of the two types of pre-BCRs have been demonstrated[58]. But
precisely how lack of the V regions in this circumstance has
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ene encoding�5 resulted in a failure of early pre-B cell pr
iferation and the loss of allelic exclusion at the level of�HC
ene rearrangements. Surprisingly, however, these�5-deficien
ice still displayed allelic exclusion at the level of surface�HC

xpression[42]. Similar results were observed in mice lack
preB1, VpreB2 and�5 [43,44]. This second set of research
etected no difference in the frequency of pre-B cells with
HC V(D)J rearrangements in the presence or absence of
uggesting allelic exclusion at the level of gene rearrange
oes not require full pre-BCR assembly. One potential exp

ion for this observation was provided in a report showing
recocious expression of IgLC could replace the need for S

o promote B cell development[45]. However, more compellin
ata shows that�HC can be detected on the surface of IgL
egative SLC-deficient cells demonstrating that some�HC are
apable of reaching the cell surface without SLC or LC[46–49].
he few cells that are able to express�HC on the surface desp

he absence of SLC would then be capable of signaling pro
ion as well as allelic exclusion. Although it is not yet clear h
�HC can reach the surface in the absence of SLC, it is pos

hat�HC can pair with other chaperone-type proteins in pr
ells, transiting to the surface and signaling allelic exclusion
ther changes in gene regulation, but not proliferation[46–49].

Differences in the ability of�HC gene products to b
xpressed on the cell surface may be responsible for the
rising observation that 4–8% of pre-B cells do express
ndogenous rearranged�HCs, only one of which is express
n the cell surface[22]. This may be due to inefficient pairin
nd thus weak surface expression of the first HC, resultin
failure of allelic exclusion followed by productive rearran
ent of a second IgHC allele. In this vein, differences in sur
s
t
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uch a dramatic effect on B cell development when trunca
utants suffice to replace full-length proteins remains a my

12,13].
As mentioned above, proliferative signals transmi

hrough the MAPK pathway are not sufficient to induce all
xclusion. Nor is BLNK required for allelic exclusion[59]. But
yk, the tyrosine kinase recruited and activated upon pre-
ignaling upstream of BLNK, is necessary for normal B
evelopment and allelic exclusion. Irradiated mice reconsti
ith Syk−/− �HC transgenic cells displayed incomplete�HC
ene allelic exclusion, however ZAP-70, another Syk fam
inase expressed in B cells, appears to play a partially redu
ole with Syk. Syk−/− ZAP-70−/− double mutants complete
rrest at the pro-B cell stage according to their cell sur
arker phenotype and cannot allelically exclude in the pres
f a �HC transgene[60].

BLNK is the adaptor protein downstream of Syk tha
nvolved in cessation of proliferation and the activation
ermline� transcription and rearrangement (see contributio
.W. Hendriks and R. Kersseboom in this issue). However, w
� selection is impaired in the BLNK knock out, IgHC alle
xclusion in that mutant remains intact[61]. This may be due t
nother partially redundant adapter, LAT, which can subst

o some extent for BLNK in pre-B cell development[62]. LAT is
ble to link Syk to downstream PLC� signaling, just as BLNK
oes[63]. Coincidentally, mice heterozygous for PLC�1 and
issing PLC�2 on an IgHC transgenic background fail to ind
llelic exclusion as measured using a PCR assay for en
ous VH gene-segment rearrangements[64]. The mechanism

or PLC�s’ involvement in allelic exclusion is not yet und
tood, but perhaps calcium flux induces activation of rele
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transcription factors. It would be interesting to know whether
over-expression of PLC� signaling cascade components could
relieve the absolute requirement for HC surface expression in
allelic exclusion.

5.2. Chromosomal choreography

Recently, large chromosomal movements have been corre-
lated with allelic exclusion at the�HC locus. Fluorescent in
situ hybridization (FISH) experiments revealed that the�HC
locus associates with the nuclear periphery in most T cells,
but is more centrally located in LPS-stimulated B cells[65].
This phenomenon was shown to be RAG independent but IL-
7R�-dependent as well as cell type specific, suggesting a role
for such chromosomal relocation in the regulation of recombi-
nation. Remarkably, two-color FISH using probes from either
end of the�HC locus revealed a higher level of compaction
within the locus in B cells undergoing V-to-DJ rearrangement
[65,66]. This compaction was lost in B cell precursors lacking
the B cell-restricted transcription factor Pax5 correlating with
a loss of rearrangement to distal V genes[67]. In transgenic T
cells expressing Pax5, central nuclear relocation of IgHC genes
occurred, but the further level of compaction did not. This Pax5
induced nuclear relocation stimulated D-to-JH rearrangement in
the T cells and allowed proximal VH gene rearrangement that
normally is not found in T cells[68,69]. Thus, nuclear relocal-
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SWI-SNF, involved in heterochromatin formation, or active in
acetylation-dependent transcriptional regulation[72].

6. Turning on kappa

�HC expression causes several rounds of cell division fol-
lowed by exit from the cell cycle, silencing of the�HC locus,
and up-regulation of the RAGs (among other molecules involved
in differentiation), as discussed above. The final step in differ-
entiation induced by�HC is Ig� locus activation and V-to-J�
recombination[34,73]. Signaling cascades emanating from the
pre-BCR induce transcription factors and perhaps chromatin
remodeling activities that bindcis-regulatory elements within
the Ig� locus resulting in germline transcription and rearrange-
ment. The mechanism of these events is currently the focus of
intense research efforts.

It is generally agreed that Ig� rearrangement does not abso-
lutely require�HC or pre-BCR expression. For example, one
can detect low levels of Ig� rearrangement in JH-deleted pro-B
cells [74] or in IL-7-dependent�HC− pro-B cell clones upon
acute withdrawal of IL-7[75]. This has led to the suggestion that
Ig� locus activation may be part of a developmental program that
is independent of pre-BCR expression. It has been proposed that
increases in Ig� rearrangement that are associated with pre-BCR
expression may be a consequence of the proliferative expan-
sion of these cells rather than a pre-BCR signal transmitted to
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zation and chromatin compaction may contribute to regula
f the recombination machinery. Allelic exclusion requires

his accessibility be reversed and indeed, FISH studies hav
emonstrated that co-localization to gamma satellite sequ
f one�HC allele coincides with allelic exclusion and is th
elaxed but reestablished during LC rearrangement[68].

IL-7 signaling is associated with histone acetylation
ermline transcription of the distal V gene segments, and is
ssary for the large chromosomal movements of the IgH

65]. Loss of IL-7 responsiveness upon pre-BCR signalin
ccompanied by deacetylation of the distal V gene segm
lthough subsequent exposure to IL-7 causes the locus to b
cetylated once again[70]. Treatment of activated splenic B ce
ith IL-7 greatly diminished gamma satellite association of

gH locus further implicating the shut-off of IL-7 receptor sign
ng in allelic exclusion[68]. Thus, adoption of new proliferatio
ignals and loss of IL-7 responsiveness upon pre-BCR sign
ay be necessary to establish allelic exclusion.
Correlating with the initial activation of the IgHC locus a

ntisense transcripts originating in intergenic regions bet
H gene segments[71]. These transcripts are turned off

he time B cell precursors reach the late pro-B stage (Ha
raction C, CD19+CD43+BP-1+). Whether these antisense tr
cripts play a role in opening up the locus or in inducing c
atin compaction via an RNAi-dependent pathway has y
e determined.

The gene expression profiles driving these developmen
egulated changes in�HC locus structure remain to be d
overed. A microarray study designed to elucidate chang
ranscription associated with B cell differentiation identified f
enes encoding proteins each of which is either associated
w
s

-
s

,
e
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h

he Ig� locus [25]. Strong data exists which contradicts t
ypothesis, however. Pre-B cells positive for cytoplasmic�HC
ontain far higher levels of J� locus dsDNA breaks associat
ith active V-to-J� rearrangement than do pro-B cells on a
anogram of DNA basis[73] and expression of a�HC transgen

n RAG-deficient mice results in increases in germline trans
ion and recombinase accessibility in sorted populations of
s compared to pro-B cells[34,39]. Also, there is data link

ng the pre-BCR-mediated activation of the Ras-MAP kin
athway to� locus activation[76]. Additional experimenta

ion will be required to determine whether the pathway f
re-BCR expression to� locus activation is direct or indirec
owever.

The two IgLC loci,� and�, are expressed at a ratio of appr
mately 20:1 in mice[77]. The more frequently rearranged, a
herefore more frequently studied� locus consists of appro
mately 140 V� gene segments, 5 J� gene segments (four
hich are functional), two germline transcript promoters,

wo enhancers (seeFig. 1). These two enhancers play partia
edundant roles in activating the�LC locus as deletion of eith
ne results in a decrease in the ratio of�-to-� expression (more s

n the E�3′ deletion), but only when both enhancers are del
s the phenotype dramatic. Deletion of both completely a
shes� recombination, leaving only� positive B cells[78]. �
ermline transcripts are activated in pre-B cells and corr
ith � rearrangements[79].

.1. Transcription factors and κ locus activation

Many studies of Ig� locus regulation have utilized Abe
on murine leukemia virus (AMuLV)-transformed pro-B c
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Fig. 1. Pre-BCR signaling activates pre-B cell proliferation, enforces allelic
exclusion and activates Ig� locus rearrangement. The upper part diagrams
the signaling cascades initiated by homotypic surrogate light chain (SLC)-
dependent interactions. Although stroma cell-associated pre-BCR ligands have
been identified, it is unclear whether this kind of interaction is critical for cells
passing through the pre-BCR checkpoint. The lower part is a schematic of the
germline� locus including the V� and J� gene segments and the constant region
exon (C�) in light grey and the intronic (E�i) and 3′ (E�3′) enhancers in dark grey.
Transcription factor binding sites are shown beneath their respective enhancers.
Dark arrows represent germline� transcript promoters.

lines. While recapitulating certain aspects of pre-B cell biol-
ogy, these transformed cells are an imperfect model regardin
gene regulation during the pro-to-pre-B cell transition. Treat-
ment of cells with LPS or growth of temperature-sensitive
AMuLV-transformed pro-B cells at the non-permissive temper-
ature stimulates� germline transcription and rearrangements
[80,81]. This activation is dependent on the activation of NF-�B,
a transcription factor composed of the five members of the Rel
family that can form various homo- and heterodimers. Indeed, in
vivo footprinting of AMuLV-transformed cells revealed an LPS-
dependent NF-�B footprint in the� intronic enhancer[10]. A
direct comparison of NF-�B site occupancy in primary pro- and
pre-B cells showed that the NF-�B site is bound with protein in
both pro- and pre-B cells. Gel shift analysis of pro- and pre-B cell
nuclei revealed different levels of the distinct NF-�B complexes,
but footprinting cannot distinguish the nature of the interacting
protein.

Occupancy of binding sites within E�3′ changes across the
pro-B to pre-B cell transition[10]. A Pax5 site is occupied in
pro-B cells but not in pre-B cells. Likewise, pre-B cells showed
hypersensitivity at binding sites that were not present in pro-B
cells, namely those for Ets family factors, PU.1 or Spi-B, and
CRE, a cyclic AMP response element. The binding sites for
PU.1/IRF-4[82], CRE, and Pax5 are in very close proximity to
each other and the authors depict a model where Pax5 bindin
interferes with binding of other factors until pre-BCR signal-
i and
P
[

AMuLV transformation arrests developing B cells in what
appears to be an early pre-B cell-like stage by an unknown
mechanism. The viral oncogene v-Abl immortalizes these cells
rendering them IL-7 independent and apoptosis resistant, but
blocks their further differentiation. Upon treatment of AMuLV-
transformed cells with the abl kinase inhibitor STI-571 (com-
monly called Gleevec) these pre-B cells activate RAG and
germline� transcription and rearrange their� and� loci at very
high rates[11]. By analyzing DNA microarray data derived from
such cells prior to and after treatment with STI-571, IRF-4 and
Spi-B were identified as key factors in activating the�LC locus
[11]. Co-transfection of cDNA expression vectors encoding the
two proteins was sufficient to induce� germline transcripts
in an AMuLV-transformed pre-B cell line[11]. PU.1−/−Spi-
B−/− primary pro-B cell cultures have lower levels of� tran-
scription than wild-type B cell lines, however IL-7 withdrawal
still induced � but not � activation, suggesting that� rear-
rangement might be unaffected by the absence of these factors
[83].

PU.1 and IRF4 interact with the E�3′ enhancer in chromatin
immunoprecipitation experiments[84,85]. Increased binding of
these proteins was associated with the enhancer’s increased
accessibility to restriction endonucleases as well as increased
association with acetylated histones in B cell lines mimicking
various stages of B cell development, leading to the suggestion
that accessibility has a greater affect on enhancer occupancy
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han protein levels[84]. IRF4 binds E�3′ but in the absence
RF4, PU.1 binding is disrupted, suggesting coordinated b
ng of the two molecules[82,85]. There are no binding sit
n the � intronic enhancer for IRF4/PU.1, thus the resul
omplete absence of� rearrangements is intriguing. Intere

ngly, IRF4,8−/− B cell precursors fail to exit the cell cyc
annot down-regulate SLC components, and express low
ls of RAG proteins, all of which could contribute to the la
f � activation [85]. Because of the similarity between t
henotype and that of the BLNK null mouse and the

hat BLNK levels are unaffected by IRF4,8 inactivation,
uthors suggest that IRF4,8 might be downstream of B

n a signaling pathway. BLNK might promote exit from t
ell cycle and differentiation as well as E�3′ factor binding
ausing� activation. It would be interesting to know wheth
hese IRF4,8−/− B cells are able to allelically exclude IgH
earrangement.

Another well-studied transcription factor, E2A, can activ
g� germline transcription and recombinase accessibility in
ymphoid cell lines[86]. There are E2A binding sites (known
-boxes) in both Ig� enhancers, and a recent study showed

wo such sites in E�i were critical for V-to-J� rearrangemen
87]. While a direct role for E2A has not yet been demonstra
nvolvement of this factor has attracted attention becaus
he abundance of E2A binding sites within Ig loci and th
bility to recruit chromatin modifying factors[88]. Specific
hromatin modifications associated with V(D)J recombina
ave yet to be identified, although regions of the IgHC lo
oised for recombination associate with hyper-acetylated

ones H3 and H4, and hypo-methylated histone H3 Lysi
89–91].
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6.2. κ locus activation and IgLC allelic exclusion

Recent attention has focused on the mechanism of IgLC
allelic exclusion. While productive IgLC gene rearrangement
leads to the formation of a BCR and inactivation of the recom-
binase, mechanisms must exist to prevent the near simultane-
ous rearrangement and expression of both� alleles in a pre-B
cell. Liang et al.[92] recently reported that high-level acti-
vation of the� locus in pre-B cells occurs in only a small
fraction of pre-B cells at any given time. Using a promoter-
less GFP cDNA reporter knocked into the coding region of
J�1, these investigators measured the percentage of cells turn-
ing on a � allele at each stage in development using flow
cytometry. They found that pro-B cells from heterozygous
mice did not express the reporter, while only 5% of small
pre-B cells did. Further experiments showed that� activation
was mono-allelic and thus may contribute to allelic exclu-
sion of IgLC rearrangement. The authors suggest that some
threshold level of a combination of particular enhancer-binding
transcription factors might allow for the rare and probabilis-
tic activation and rearrangement of a single� allele at a
time.

In contrast, Bergman and co-workers found biallelic germline
transcription in single-cell RT-PCR assays performed on pre-
B cells [93]. They corroborated this finding with RNA-FISH
performed on AMuLV-transformed pre-B cells stimulated with
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7. Conclusion

The transition of B cell precursors through the pre-BCR
checkpoint (i.e. from the pro-B to pre-B cell stage) requires
tightly coordinated signals emanating from surface pre-BCR
that directs complex changes in the pattern of gene expres-
sion and even movement of entire chromosomes within the
nucleus. Alterations in nuclear transcription then redirect the
V(D)J recombinase to different rearranging Ig loci creating
molecules that then replace the originating receptor with a new
molecule, the BCR. While the earlier steps in signaling cascades
are quickly being teased apart despite the complexity of redun-
dant pathways, and enhancers responsible for IgHC and� locus
activation are known, pathways linking signaling to retargeting
of the V(D)J recombinase remain vague at best. While over-
expression of particular signaling molecules or transcription
factors can mimic certain aspects of development, the nature of
signaling pathways makes over-expression and knock-out stud-
ies difficult to interpret. This is particularly true in light of a
stochastic model of� activation, which requires the cumulative
action of multiple factors. A better understanding of chromatin
structure’s precise role in accessibility and the coordinated activ-
ity of chromatin remodeling enzymes and transcription factors
will help identify key components involved in transmitting sig-
nals from the pre-BCR to the�HC and�LC loci, and may also
determine causality of these correlated events.
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PS, which revealed that 91% of cells expressed�LC from both
lleles. These results conflict with those from Liang et al.
ussed above who suggest monoallelic germline transcr
recedes rearrangement. Differences between these two
esults may have to do with the amounts of germline transc
etected in two different assays (GFP expression versus
ycle-number PCR).

DNA cytosine methylation can inhibit recombinase ac
ty [94] and monoallelic DNA de-methylation of the Ig� locus
orrelates with its activation[95,96]. DNA methylation sta
us is not affected by loss of E�3′ but surprisingly both alle
es are demethylated in E�i−/− B cells. In the absence
oth enhancers, however, alleles remain fully methylated[78].
esults from the Schlissel group corroborate the correl
f demethylation with activation, as the modified�-GFP allele
as unmethylated in GFP+ pre-B cells, but was highly meth

ated in GFP− cells. Surprisingly, unrearranged� alleles in
ature B cells remain CpG methylated but are noneth
ighly transcribed casting doubt on causality in the relation
etween DNA methylation and Ig� locus activation in this late
tage.

The timing of replication during S phase is associated
ene expression[97]. At the Ig loci, where alleles appear
e activated one at a time, replication is asynchronous[98].
his observation has led to the hypothesis that early r
ation could be associated with the allelic choice for rec
ination. Asynchronous replication begins in early emb
enesis, thus pre-BCR signaling does not influence this
omenon. Each of these epigenetic events is correlated
LC rearrangement but the order of events needs t
stablished.
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