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Abstract Natural killer (NK) cells are bone-marrow-
derived lymphocytes that play a crucial role in host defense
against some viral and bacterial infections, as well as
against tumors. Their phenotypic and functional maturation
requires intimate interactions between the bone marrow
stroma and committed precursors. In parallel to the
identification of several phenotypic and functional stages
of NK cell development, recent studies have shed new light
on the role of stromal cells in driving functional maturation
of NK cells. In this review, we provide an overview of the
role of bone marrow microenvironment in NK cell
differentiation.
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Introduction

Natural killer (NK) cells were originally described as a
distinct subset of lymphoid cells capable of lysing certain
tumor cells without prior sensitization [1]. Over the years,
they have been found to play an important role in
combating infections, in graft rejection, and in pregnancy
[2–6]. Upon activation, they directly lyse target cells,
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through exocytosis of perforin- and granzyme-containing
granules, CD95 ligand (FasL), or tumor necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL) path-
ways [7–9], and they produce cytokines, such as interferon
(IFN)-γ, TNF-!, and granulocyte–macrophage colony
stimulating factor (GM-CSF) [10–16]. NK cell target
recognition depends on the expression of a set of inhibitory
and activating receptors that recognize ligands on target
cells, and their activation is subjected to the balance of
signaling through these inhibitory vs activating receptors
(reviewed in [17–19]).

In the mouse, there are two families of major histocom-
patibility complex (MHC) class I specific inhibitory
receptors, Ly49 and CD94-NKG2A, both of which are
expressed on overlapping subsets of mature NK cells [17].
These inhibitory receptors, by preventing NK cell activa-
tion and killing of normal self cells that express high levels
of autologous class I MHC molecules, provided the
molecular basis for the “missing self” hypothesis [20],
although non-MHC-binding inhibitory receptors have more
recently broadened the definition of self [21–24]. As for
mouse-activating receptors, such as NKRP1A and
NKRP1C (NK1.1), DX5, CD69, Ly49D and H, and
NKp46 and NKG2D [19, 25, 26], they recognize ligands
on target cells, which are induced upon infection, transfor-
mation, or stress (reviewed in [27, 28]). Adhesion mole-
cules also participate in interaction between NK cells and
their target cells, such as mouse or human CD2 (LFA-2),
CD11a (LFA-1), CD11b (Mac-1), CD43 (sialoadhesin), and
CD44, or human Lag3 and CD56 (N-CAM), which are
expressed by NK cell subsets [29–31].

Early experiments have shown that NK cells in the adult
mouse are derived from bone marrow hematopoietic
precursors and that their full maturation into cytolytic cells
requires an intact bone marrow microenvironment [32–34].
Unlike other lymphocytes, they are present in severe
combined immunodeficiency (SCID) or recombination
activating gene (RAG)-1 or RAG-2-deficient mice, sug-
gesting that their differentiation does not require events
essential for antigen receptor rearrangement [35–38].

Recent progress has been made by identifying mole-
cules, such as cytokines, receptors, and transcription factors
contributing to NK development [29, 39], as well as
receptors expressed by immature and mature NK cells
[17, 19, 40, 41]. In line with the identification of self-MHC
class I specific receptors, several studies have attempted to
define the active mechanisms that control self-tolerance of
NK cells and/or drive their functional maturation [42–45].

This review will address some recent findings in the
field of NK cell development, with particular emphasis on
the role of bone marrow stromal cells in the acquisition of
inhibitory and activating NK cell receptors and NK cell
effector functions.

Identification of NK progenitors

In the embryo

Early studies have established the existence of a restricted
NK/T cell progenitor in the fetal thymus, which expresses
FcγRIII and gives rise to either TCR!β+T cells or NK cells
after intrathymic or intravenous transfer [46]. Subsequent
studies have shown that this population is heterogeneous,
with some of the cells expressing the NK markers NK1.1
and DX5 but not CD117 (c-Kit), while others express
NK1.1 and CD117 but not DX5 [47, 48]. Based on in vitro
culture systems and functional activities using both types of
precursor cells, it was concluded that the CD117+ popula-
tion represents bipotent T/NK precursor cells, while the
CD117− DX5+ cells are mature NK cells.

Analysis of fetal blood revealed the existence of a
prethymic NK1.1+ CD90+ CD117+ NK/T-cell-restricted
progenitor cell, which is capable of differentiating into NK
cells or T cells but not into B cells or myeloid cells [49].
More recent studies have clearly established the existence of
a clonal lineage-restricted T and NK cell progenitor both in
the fetal liver and the fetal thymus [50, 51]. Using in vitro
culture of early thymocyte precursors and OP9 stromal cells
engineered to produce notch ligand delta 1, the existence of
such bipotent T/NK precursors have been confirmed within
the DN1 (CD44+ CD25−) and DN2 (CD44+ CD25+) early
thymocytes [52, 53]. While these studies clearly show that
single fetal DN2 thymocytes, differentiating into T-restricted
precursors in the presence of notch ligands, still possess an
NK lineage potential, the signals delivered by the thymic
stroma driving these early thymocytes towards the NK
lineage are still unknown. Among potential candidates,
membrane lymphotoxin, which is indispensable for V! 14
NKT cell differentiation, but not for the development of
conventional T-cells, could be involved in NK cell differen-
tiation in the thymus [54].

In the adult

NK cell development outside the bone marrow

In adult mice, while the bone marrow microenvironment is
known to be critical for NK cell development, other sites
were shown to also contribute to the emergence of
peripheral mature NK cell pool [55–58]. NK cells originat-
ing in the thymus have been notably identified as a distinct
population differing from bone-marrow-derived NK cells
by the expression of GATA-3 and CD127 [interleukin-7
receptor alpha (IL-7R!)] [57]. Whether these cells differ-
entiate in the thymus from early or late bone-marrow-
derived committed NK precursors is still unknown. The
bone marrow could be involved in the initial steps of NK
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cell differentiation, whereas their final maturation would be
achieved in other sites [29, 58]. The existence of immature
NK cells in the lymph node, spleen, and liver would be
consistent with this possibility [9, 59], although mature NK
cells are also found in the bone marrow [41, 60]. Notably,
the fact that GATA-3+ NK cells are present in the thymus
and bone marrow, and that IL-7 is produced by stromal cells
in both of these sites, strongly suggests the existence of
additional signals required for the selective homing and
development of CD127+ NK cells in the thymus.

The same holds true for the liver, which should deliver
in the adult specific signals for the homing or development
of a unique Mac-1lo DX5lo NK cell subset that expresses
cell surface TRAIL and can use this effector pathway [9].
On the contrary, the lymph nodes, which do not represent a
site for NK cell development under steady-state conditions,
can recruit CD62L+ CCR7+ NK cells under antigenic
stimulation, providing an initial source of IFN-γ production
necessary for TH1 polarization [61].

In human, the recent identification of NK precursors,
which are CD34dim CD45RA+ integrin !4β7

hi and are
highly enriched in the lymph nodes, strongly suggests that
bone-marrow-derived human NK precursors migrate from
the bone marrow to the lymph node, where endogenous
cytokines drive their differentiation into CD56bright NK
cells in vivo [55]. Altogether, these observations have led to
models in which immature (and perhaps mature) NK cells
originating from the bone marrow can migrate through the
peripheral blood and colonize other sites where they receive
specific signals to further proliferate and differentiate into
specialized functional NK cell subsets.

NK cell development in the bone marrow

NK cells are mostly bone-marrow-derived, and they are
dependent upon an intact bone marrow microenvironment
for final maturation into lytic cells. Indeed, treatment of
mice with 89Sr, a bone marrow seeking isotope, results in
selective destruction of the bone marrow cavity and loss of
NK killing activity in the spleen, while the numbers and
functions of B cells, T cells, and macrophages remain
largely unchanged [32, 33]. This was further confirmed in
estrogen-treated mice and in congenitally osteopetrotic (mi/
mi) mice, which have NK1.1+ target binding, non-lytic, and
non-IFN-inducible cells present in their spleens [62].
Interestingly, when NK progenitors from normal bone
marrow were transplanted into estrogen-treated mice, lytic
NK cells failed to develop while splenocytes from treated-
animals gave rise to normal NK cells upon transplantation
into irradiated normal animals [63, 64]. Collectively, these
results indicated that there are two phases in NK cell
differentiation. In the first one, early precursors differentiate
into non-lytic NK cells, capable of binding their targets,

independently of an intact bone marrow microenvironment.
In the second phase, the bone marrow microenvironment is
absolutely required for immature NK cells to acquire their
full cytotoxic potential.

Using in vitro culture systems or in vivo transplantation
assays, early precursors in the bone marrow that could give
rise to B, T, NK, and DCs were identified as Lin− (CD3−

CD19− Ter119− Gr1−) c-Kithi Sca-1+ fms-related tyrosine
kinase 3 (FLT3)+ CD34+. These cells, which are lymphoid
specified and have greatly reduced non-lymphoid differen-
tiation potential, have been termed early lymphoid progen-
itors (ELPs) [65–67]. Common lymphoid progenitors
(CLPs), which derive from these early precursors, are
Lin− Kitlo Sca-1lo IL-7R!+ and cannot generate myeloid-
lineage cells [68]. Although ELP and CLP precursors have
the potential to give rise to B, T, and NK cells in vitro and
in vivo, it is not clear whether mature NK cells must transit
through these intermediates. For example, the c-kit-defi-
cient Vickid mice lack CLP but have normal numbers of
peripheral NK cells [69, 70]. Further differentiation of CLP
results in the acquisition of IL-2/IL-15Rβ (CD122) by
committed NK precursors (NKP), which become IL-2 or
IL-15 responsive and are restricted to the NK lineage. NKP
have been identified and characterized in the fetal thymus
and the bone marrow of the adult mice with the following
phenotype: Lin− CD122+ NK1.1− DX5− [71, 72]. Impor-
tantly, while signals such as transcription factors (TFs) and
cytokine receptors have been implicated in imposing
lymphoid commitment, those responsible for generating
NKP in the bone marrow and thymus are still poorly
understood. The bone-marrow-derived NKP express
CD122 but neither NK1.1 nor DX5 (pan-NK cell markers),
and they give rise exclusively to functional NK cells in
vitro. The next stages of NK cell development, identified in
the bone marrow of the adult mice [41, 73], are character-
ized by the sequential acquisition of NK1.1 (Nkrp1c; with
CD94/NKG2, NKG2D, and integrin !v, stage II), c-kit and
Ly49 receptors (stage III), and the differential modulation
of integrin !2 (DX5) and integrin !v (stage IV; Fig. 1). At
this stage, developing NK cells proliferate vigorously and
undergo a substantial and specific expansion in the bone
marrow. Thereafter, as NK cells upregulate the expression
of Mac-1 (integrin !M) and CD43 (stage V), they become
fully competent to kill their target and secrete cytokines.
Finally, a recent detailed repertoire analysis revealed that
mature Mac-1hi NK cells can be further divided into
CD27hi and CD27lo subpopulations, representing effector
cells and long-lived terminally differentiated mature NK
cells, respectively [60, 74]. Interestingly, in the C57Bl/6
strain (H-2b), a higher proportion of the CD27lo NK cell
subset expresses self-recognizing Ly49 and KLRG1 inhib-
itory receptors, their cytotoxic activity being more tightly
regulated than that of the CD27hi subset. As for human NK
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cells, the CD56dim subset has a high expression of KIRs
and cytotoxic granules and exhibit higher cytotoxic activity
than the CD56bright subset [74, 75].

Signals delivered by the bone marrow environment

1 “Early” signals and NKP generation
While the bone marrow represents the generative site for

NKP, which undergo further maturation both in the bone
marrow itself and in other sites, it remains to be determined
whether it is sufficient to support all the stages of NK cell
development. It is possible, for example, that treatments
leading to bone marrow ablation could affect the capacity of
NK precursors to respond to maturation signals in other sites
than the bone marrow itself. The identification of NK cell
precursors and immature NK cells in the spleen and the liver
that express the effector molecule TRAIL and the recent
identification of thymus-derived GATA-3+ CD127+ NK cells
in the thymus are in agreement with the prediction of an
organ-specific maturation of NK precursors. In line with this
model, the mature and functional NK cells found in the bone
marrow could thus constitute a reservoir for other sites,
which can be mobilized quickly upon infection or stress [76].

In the bone marrow environment, the generation of NKP
from hematopoietic stem cells (HSC) appears to be subtly
controlled by the coordinated action of TFs and signals
derived from bone marrow stromal cells. Briefly, these TFs
include those involved in the generation of NKP from ELP,
such as PU.1, Ikaros, Ets-1, and Id2, those involved in the
further maturation of immature NK cells (Gata-3, IRF-2,
and T-bet), and those involved in the functional differenti-

ation of mature NK cells [CCCAAT/enhancer-binding
protein-γ (CEBP-γ), myeloid ELF1-like factor (MEF), and
microphthalmia-associated transcription factor MITF] [29].
Among the signals delivered by the bone marrow environ-
ment, c-kit-L, Flt3L, and gamma-chain-dependent cyto-
kines play a general role in lymphoid and in NK cell
commitment, as ELP, CLP, and NKP, respectively, express
receptors for these cytokines and are therefore sensitive to
these growth factors. However, none of these cytokine
alone is essential for the generation of committed NK
precursors, as shown in mutant animals (c-kit-, γc- or
FLT3L-deficient) that have a normal or only a slight
reduction in the absolute number of NKP [70, 77]. In fact,
close interactions between ELP precursors and stromal cells
are required for NKP generation, as shown in vitro using
irradiated long-term bone marrow cultures (LT-BMC) as
stromal cells [78, 79]. Along those lines, interactions
between lymphotoxin (LT) !1β2-expressing hematopoietic
cells and LTβ receptor (LTβR)-expressing stromal cells
were shown to induce the activation of stromal cells and the
expression of IL-15 receptor on NK precursors rendering
them IL-15 sensitive [71, 80]. In addition, an instructive
role of a stress-response gene, named vitamin D3 upregu-
lated protein 1 (VDUP-1) in the induction of CD122
expression has been recently highlighted, as NKP
(CD122+) cells are undetectable in VDUP-1−/− mice [81].

2 “Late” signals acting downstream NKP

2.1 Transcription factors
Several TFs, including T-bet [82], IFN-regulatory factor-

2 (IRF-2) [83], and GATA-3 [59], which could act in a

Fig. 1 Phenotypic markers
expressed by developing NK
cells in the bone marrow. NK
precursors (NKP) are character-
ized by CD122 expression
(stage I), but they lack other NK
cell markers. Immature NK cells
expressed NK1.1 (stage II),
Ly49 molecules (stage III), and
DX5 and CD11b integrins
(stage IV), whereas they down-
regulate the expression of integ-
rinα!v (stages IV and V). A
hypothetical model of the dif-
ferent signals intervening during
interactions between NKP and
bone marrow stromal cells
underlines the role of Tyro
3/ligand interactions and IL-15
signaling in driving NK cell
differentiation between stages II
and III of NK cell development
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sequential fashion [56], exert their roles in controlling the
differentiation of immature NK cells in the bone marrow
and their subsequent migration in other peripheral sites. In
the absence of these TFs, bone marrow NK cells are
increased, whereas there is a reduction in the number of
peripheral, splenic, or liver NK cells. NK cells from mice
lacking these TFs share the same phenotype with a low
expression of CD11b and CD43, a reduced capacity to
secrete IFN-γ, and a normal cytotoxic activity against
sensitive target cells, suggesting that some effector func-
tions could be detected on phenotypically immature NK
cells. Other TFs such as the MEF, the MITF, and the
CEBP-γ influence the effector functions of NK cells, as
revealed by the normal NK cell development, but impaired
cytotoxicity and cytokine production in NK cells deficient
in these TFs [84–86].

Knowing that acquisition of Ly49 receptors on immature
NK cells represents a crucial step before expansion and
functional maturation, numerous studies have attempted to
identify the molecular signals involved in the acquisition of
Ly49 molecules on developing NK cells in the bone
marrow. They have notably shown in vitro and in vivo that
Ly49 receptor expression depends on cellular interactions
between NK precursors and stromal cells and is induced in
an ordered and cumulative way, although the precise order
varies as a function of the culture system and the detection
method used [87–90].

Using a transgene containing the entire Ly49a gene,
Tanamachi et al. [91] defined a critical regulatory element,
upstream the Ly49a transgene, which is essential for normal
Ly49A expression in NK cells, in a variegated manner
similar to endogenous Ly49A expression. This element was
shown to correspond to a distal promoter element, called
Pro1, that is active only in immature NK cells [92].
Evidence that Pro1 is conserved in other Ly49 genes and
exhibits bidirectional promoter activity led to a molecular
model to account for variegated expression of Ly49 genes,
in which activation of gene expression is a probabilistic
function dependent on the relative strengths of the forward
and reverse promoter activities of Pro1, which then
influence stable activation of the Pro2 and Pro3 promoters
used in mature NK cells [93].

Several TFs have been shown to control the formation of
the Ly49 repertoire in developing NK cells. Indeed, TCF-1
positively regulates the expression of Ly49A and D
receptors and negatively regulates the expression of
Ly49G and I molecules [94, 95], whereas the LEF-1 TF
appeared to have only a minor impact on Ly49G2 receptor
expression [96].

2.2 Cytokines
Among the multiple factors interacting with the γc-

dependent cytokine receptors, IL-15 is the main cytokine
that controls the activation of IL-15Rβ+ NKP precursors as

well as immature and mature NK cells. This factor, which is
essential for the development and the survival of mature
NK cells in the periphery [76, 97–100], was shown to be
associated with the IL-15R! subunit on hematopoietic and
non-hematopoietic cells and presented in trans to NK
precursors expressing the β and γ chains of the IL-15
receptor [101]. However, while its implication in the early
steps of NK development has been clearly established, its
exact role in the late stages of NK cell differentiation is still
a question of debate. Some studies have indeed shown a
nearly normal Ly49A, D, and CD94 and a reduced Ly49G2
and C/I repertoire expression in RAG2−/−×IL-15−/− animals
[77], while others have found more profound abnormalities
in Ly49A, G2, and I receptor expression in IL-15−/− mice
[83, 102]. These differences in the Ly49 repertoire observed
in IL-15-deficient NK cells could be due to differences in
the genetic backgrounds of mice in which the repertoire
was studied, the RAG-deficient animals providing a better
environment for a subpopulation of NK cells to proliferate
and/or differentiate in vivo, independently of IL-15 [76].
Other molecules, such as membrane LT, may also participate
in the formation of the NK cell Ly49 receptor repertoire,
although the results were not in complete agreement [103,
104]. The fact that exogenous IL-15 could correct the Ly49
receptor repertoire in LT!−/− mice and that LTβR signaling
induces IL-15 production by stromal cells strongly suggests
that Ly49 regulation is mediated at least in part by signals
mediated by LTβR through the activation of IL-15 [103].

2.3 MHC class I molecules
Although it has been known for many years that NK

cells with mature phenotype develop in normal numbers in
MHC class I deficient mice and humans [105, 106], NK
cells arising in the absence of MHC class I molecules are
functionally hyporesponsive, meaning that they exhibit
reduced but still significant functional activity in most
assays [17, 107]. Furthermore, a subset of NK cells lacking
self-MHC-specific inhibitory receptors (Ly49 in mouse or
KIR in human) was shown to exist in both species, and this
NK subset exhibited hyporesponsive functional activity
similar to that of the NK cells in class I deficient animals
[42, 44, 108]. These studies demonstrated that engagement
of inhibitory MHC-specific receptors influences the func-
tional status of NK cells. Indeed, the cytoplasmic immu-
noreceptor tyrosine-based inhibitory motif (ITIM) of an
inhibitory Ly49 receptor was shown to be critical for NK
cells to attain higher functional activity [44]. It remains
controversial, however, whether the engagement of inhib-
itory receptors is necessary for NK cells to undergo a
terminal differentiation step where full functionality is
attained. The alternative interpretation is that NK cells mature
fully without engaging these receptors but are subsequently
“anergized” because they are persistently stimulated by other
cells in the body (reviewed in [43, 109]). Whichever
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hypothesis is correct, and they are not mutually exclusive, the
recent studies have shed new light on NK cell self-tolerance.

2.4 Other signaling pathways
Among the signaling molecules that influence the

formation of the Ly49 repertoire, PLCγ-2, a key regulator
of intracellular calcium mobilization, was shown to be
critical for the final stage of NK cell development, as
revealed by the partial reduction of Ly49 expression and the
dramatic impairment of functional activity in NK cells
deficient for this enzyme [110, 111].

More strikingly, using an in vitro stroma-dependent
system to induce NK cell differentiation [87], an analysis of
differentially expressed transcripts from different bone-
marrow-derived NK clones allowed the identification of
receptors for stromal factors involved in NK cell develop-
ment [112]. These factors, Gas6 and protein S, are the
endogenous ligands for the Tyro 3/Axl/Mer (TAM) family
of protein tyrosine kinase (PTK) receptors [113–119],
which are expressed on NK precursor cells. A clear
demonstration of the role of these ligands and their
receptors in NK cell development was provided by the
analysis of NK cell differentiation and functional matura-
tion in mice deficient for one or more members of the Tyro
3 receptor family. In mice deficient for all three receptors,
not only was the repertoire of inhibitory and activating NK
cell receptors greatly altered in the bone marrow but the NK
cells were also deficient in killing sensitive targets and in
initiating cytokine production in response to immune
stimuli [112]. In addition, the reduced expression of the
integrins Mac-1 and DX5 and the increased expression of
integrin !v in the receptor knockouts suggested that Tyro 3
receptors are required between stages II and III of NK cell
development. Finally, an instructive role for these Tyro 3
receptors was indicated by studies using fibroblasts
expressing Gas6/protein S to support NK cell differentia-
tion in cell culture. In clonal conditions, recombinant
versions of these ligands drove growth and differentiation
of NK cell precursors in vitro, confirming the direct
involvement of these ligands in NK cell development.
Important issues that need further investigation include
defining the stage of NK cell development, where pre-
cursors express these Tyro 3 receptors, and whether Axl,
Tyro 3, and Mer are sequentially expressed. Considering
the lack of functional activity in NK cells deficient for the
Tyro 3 receptors, it will also be important to determine
whether Tyro 3 receptor signaling on subpopulations of
mature NK cells can directly induce their functional
activation or if these PTK receptors induce NK cell
functions through the expression of still unknown activat-
ing receptors. Interestingly, Tyro 3 receptors contain a
conserved ITIM motif [118, 120], which could act in
conjunction with inhibitory Ly49 molecules in the acquisi-
tion of NK cell effector functions [44].

More strikingly, these results fit very well with the recent
demonstration of an interaction between Axl and the IL-
15R! subunit. In murine fibroblasts, Axl stimulation
through Gas6 could indeed induce a significant upregula-
tion of IL-15R!, and IL-15 could transactivate Axl and its
associated signaling pathway, leading to tyrosine phosphor-
ylation of both Axl and IL-15R! and activation of the
phosphatidylinositol 3-kinase/Akt pathway [121, 122].
While this heterotypic association remains to be validated
in NK cells, one possibility could be that Axl expressing
NK precursors could respond to bone-marrow-derived
Gas6/ProtS signals, leading to the expression of IL-15R!
chain by early NK precursors (before the NKP stage),
which thus become sensitive to IL-15 signals provided by
the surrounding bone marrow stromal cells. The analysis of
Axl and IL-15R! protein expression on various populations
of committed NK precursors should give some clues on the
respective role of these receptors in the early steps of NK
cell differentiation. As for the expression of IL-15R!,
which is induced upon Axl signaling in fibroblasts [121], it
remains to be determined whether this holds true for NKP
cells or their immediate progenitors, which express low
levels of IL-15R! transcripts [72]. Identification of the
signals that regulate the expression of both the IL-15R! and
the IL-15Rβ chains on NK-committed precursors should
provide crucial information on the mechanisms involved in
NK cell development.

Conclusion

Despite considerable progress in identifying activating
and inhibitory receptors that guide natural killer (NK) cell
specificity for their target cells, little is known about the
molecular signals required for their differentiation in the
bone marrow, the main site of NK cell differentiation in
the adult. For instance, the nature of the interactions
between NK progenitors and the bone marrow microen-
vironment that promotes receptor acquisition and NK cell
maturation remains poorly understood. Identification of
these signals, which act on developing intermediates,
should help in understanding how NK cells acquire a
complete and functional repertoire. In the adult, this
repertoire ensures that NK cells are self-tolerant (unre-
sponsive to normal self cells) and maximally effective
against target cells (responsive to abnormal or missing
self). Clearly, the identification of receptors regulating
NK-cell function, as well as the signals that promote their
expression, should give a more complete picture of NK
development and shed light on the pathogenesis of certain
immune disorders. It may also offer novel tools for
molecular intervention in these diseases.
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