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Summary: Stimulation of natural killer (NK) cells is regulated by a com-
plex balance of inhibitory and stimulatory receptors expressed by NK
cells. However, the interaction of stimulatory receptors and their ligands
is poorly understood. One stimulatory receptor, NKG2D, is expressed by
all NK cells, stimulated CD8π T cells, gd T cells and macrophages. Re-
cently, progress has been made in defining cellular ligands for NKG2D.
Four different families of ligands have been identified in mice and
humans, all of which are distantly related to MHC class I molecules.
Some of the ligands are upregulated in transformed and infected cells,
provoking an attack by the innate and adaptive immune systems. It ap-
pears that these ‘‘induced-self’’ ligands recognized by the NKG2D recep-
tor may be a precedent for a new strategy of target cell recognition by
the immune system.

Introduction

Natural killer (NK) cells are bone marrow-derived, large

granular lymphocytes that recognize and lyse a variety of

transformed and infected cells (1–5). In addition to their

cytotoxic effector functions, NK cells are also very potent pro-

ducers of cytokines (including interferon (IFN)-g, tumor ne-

crosis factor (TNF)-a and granulocyte–macrophage colony-

stimulating factor (GM-CSF)) and chemokines (such as

macrophage inflammatory protein (MIP)-1 family members

and RANTES) (for an overview see (6)). NK-cell responses

occur rapidly (within hours), providing potent effector activ-

ities before the adaptive immune response is sufficiently de-

veloped to control the infection or tumor.

Inhibitory target cell recognition

Unlike B and T cells, NK cells do not require gene rearrange-

ment machinery to assemble their receptor genes. However,

NK cells do clearly discriminate among potentially harmful

cells (i.e. tumor cells, infected cells and stressed cells). Fifteen

years ago a model was first introduced proposing that NK

cells discriminate target cells based on the levels of target cell

self-MHC class I expression (7). Low or absent self-MHC class



Diefenbach & Raulet ¡ Target cell recognition by NK cells

I molecules would activate the NK cell, whereas normal levels

of self MHC class I would inhibit them. This model was sup-

ported by studies with genetically engineered mice, which

showed that NK cells attack otherwise normal cells that lack

some or all self-MHC class I molecules (8, 9). In further sup-

port of the model, three families of inhibitory, MHC class

I-recognizing receptors expressed by NK cells were subse-

quently discovered. The first to be discovered were the Ly49

receptors in rodents, which are related in structure to C-type

lectins and which bind directly to MHC class Ia molecules

(10–13). In humans only a single apparently non-functional

Ly49 gene has been identified (14, 15). Human NK cells ex-

press an alternative set of structurally different receptors, the

killer cell immunoglobulin-like receptors (KIR), which also

bind directly to MHC class Ia molecules (16–19). So far no

KIR receptors have been identified in rodents. More recently

another lectin-like family of receptors has been characterized,

which is conserved in primates and rodents and consists of

the CD94/NKG2 heterodimers (20–22). One of several

NKG2 isoforms (NKG2A, B, C, E; NKG2A and B represent

alternative splice variants encoded by the same gene) can as-

sociate with the unique CD94 chain (21, 22). Of these iso-

forms, only CD94/NKG2A and B are known to be inhibitory

receptors. Like the other inhibitory receptors, the CD94/

NKG2A receptor also detects MHC class Ia expression by tar-

get cells, but in this case the mode of MHC class Ia detection

is indirect: CD94/NKG2A identifies class Ia-positive cells by

specifically recognizing a cleaved peptide from the leader se-

quences of class Ia molecules, bound into the groove of a

class Ib molecule. The class Ib molecule is Qa-1 in mice and

HLA-E in humans (23–25).

The cytoplasmic domains of all inhibitory NK-cell recep-

tors contain an immunoreceptor tyrosine-based inhibitory

motif (ITIM) with the consensus sequence (I/VxYxxL/V).

Upon tyrosine phosphorylation (possibly by src-family ki-

nases), the src homology 2-containing tyrosine phosphatases

(SHP)-1 and SHP-2 are recruited to these receptors (26, 27).

The precise sequence of biochemical events that subsequently

results in the inhibition of NK cell function remains to be

defined.

The various MHC-specific inhibitory receptor genes are ex-

pressed by overlapping subsets of NK cells such that an indi-

vidual cell expresses a few inhibitory receptors. This leads to

a complex combinatorial repertoire of NK specificities for

MHC class I molecules. Evidence suggests that the repertoire

is further shaped by education mechanisms that create a use-

ful and self-tolerant repertoire. The formation of the NK-cell

repertoire is the subject of a recent review from our group
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(28), and will not be addressed in detail here. In brief, it

appears that the inhibitory receptor repertoire is structured to

prevent NK cells from lysing self cells that express normal

levels of each self class Ia molecule, but to unleash NK cells

in response to target cells that downregulate some or all class

Ia molecules. This may well be of great biological signifi-

cance, as MHC downregulation often occurs in transformed

and infected cells.

While inhibitory recognition of class I MHC molecules ac-

counts in part for the target cell specificity of NK cells, it has

been recognized that some sensitive target cells express nor-

mal levels of MHC class I molecules, while some other cells

are not sensitive to NK-cell lysis despite low or absent MHC

class I expression. Thus, it is clear that NK cells employ ad-

ditional mechanisms to discriminate target cells. It has long

been proposed that NK cells also make use of stimulatory

receptors, specific for unknown ligands, that may be differen-

tially expressed by target cells. While candidate stimulatory

receptors have been identified over the years, the ligands for

most of these receptors have not been identified. Conse-

quently, an understanding of the principles governing stimu-

latory recognition by NK cells has lagged behind our under-

standing of inhibitory recognition. Recently however, sig-

nificant progress has been made in elucidating the biological

function of some of these receptors. In the following sections

we will summarize some general aspects of stimulatory NK-

cell receptors and then review in some detail the best char-

acterized stimulatory receptor–ligand system to date, consist-

ing of the NKG2D receptor and its ligands.

Positive target cell recognition: stimulatory receptors

and their ligands

Stimulatory NK-cell receptors can be roughly divided into

one group of receptors that recognizes MHC class I molecules

and another group that does not (Table 1). The MHC class I-

specific stimulatory receptors include members of each family

that also encodes inhibitory receptors (Ly49, KIR or CD94/

NKG2). The presumptive non-MHC-specific stimulatory re-

ceptors include the lectin-like NKG2D (though one of its

ligands is arguably a non-classical class I protein, see below),

NKR-P1A and NKR-P1C receptors, and the Ig-like NKp46,

NKp44 and NKp30 receptors (for a more complete list see

Table 1). A third group of receptors mentioned in Table 1, CD2,

CD16, CD28, CD40L, 2B4, DNAX accessory molecule

(DNAM)-1/leukocyte function-associated antigen (LFA)-1

and Lag-3, are most likely to co-activate rather than directly

stimulate NK cells. Below we will focus on the first two

groups of receptors.
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Table 1. Stimulatory receptors on NK cells

Ligand(s) Adapter Species Expression pattern References

Stimulatory receptors recognizing MHC class I molecules

Ly49D H2-Dd KARAP/DAP12 m Variegated 39, 41, 61

Ly49H Unknown KARAP/DAP12 m Variegated 40, 48

NKG2C, NKG2E Qa-1b – HLA-E KARAP/DAP12 m, r, h Variegated 20, 23, 25, 46, 119

KIR2DS HLA-C KARAP/DAP12 h Variegated 43–45

KIR3DS ? – HLA molecule KARAP/DAP12 h Variegated 43–45

Stimulatory receptors recognizing non-MHC class I molecules

NKG2D Rae1a, b, g, (d) KAP/DAP10 m, r, h All NK cells, 20, 31, 33, 78–82, 92
H60 all CD8π T cells (after T-cell receptor
MICA, MICB (TCR) stimulation in mice),
ULBP1, 2, 3 all macrophages (after stimulation),

ca. 50% of NKT cells, gd T-cell subset

NKp46 ? Viral CD3z, FceRgI m, h All NK cells 49, 50, 56, 57, 121
hemagglutinin

NKp44 Unknown KARAP/DAP12 h All NK cells (after IL-2 stimulation) 51, 52

NKp30 Unknown CD3z, FceRgI h All NK cells 53

NKR-P1A Unknown Unknown m, r, h Subset 65, 77

NKR-P1C Unknown FceRgI m, r All (or most) NK cells 62–68, 74–76

CD16 IgGs CD3z, FceRgI m, r, h Most NK cells 122–126

CD2 CD58 (LFA-3), CD3z m, r, h Most NK cells 127–129
? CD48 ? (no direct association)

CD244 (2B4) CD48 SAP (SH2D1A) m, h Most or all NK cells (also CD8π 130–136
ab T cells and gd T cells and myeloid cells)

CD28 B7.1/B7.2 YxxM in m, h Mice: splenic NK cells 137–142
cytoplasmic domain Humans: only on fetal NK cells

CD40L CD40 m, h Humans: induced on all NK cells 143, 144
Mice: ?

LFA-1/DNAM-1 Ligands for LFA-1 DNAM-1 recruits the h Human: most NK cells, ab T cells , gd T cells, 145–147
(ICAM-1, 2, 3) protein tyrosine kinase fyn monocytes and some B cells

Mice: ?

Lag-3 MHC class II associates with the m, h NK cells, activated CD4π and CD8π T cells 148–150
CD3–TCR complex

A common feature of all stimulatory receptors is that they

lack the ITIM motif in their cytoplasmic domains. Instead, all

known stimulatory receptors have charged residues in their

transmembrane domains that are necessary for association

with adapter signaling proteins, which have very short extra-

cellular domains and are not believed to participate in ligand

binding. Instead, the intracellular domains of the adapter pro-

teins have docking sites for downstream stimulatory signaling

molecules. Most adapters (FceRgI, CD3z and the killer cell-

activating receptor-activating protein (KARAP)/DAP12 mol-

ecule) contain immunoreceptor tyrosine-based activation

motifs (ITAM) in their cytoplasmic domains, which allows

them to associate with ZAP70 and/or syk-family kinases (29,

30). A recently defined adapter protein, designated KAP10 or

DAP10, has a YxxM motif in its transmembrane domain,

which allows recruitment of phosphatidylinositol (PI) 3-ki-

nase (31, 32). So far, the only known receptor that associates

with KAP/DAP10 is NKG2D (31, 33). The NKR-P1 proteins
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associate with FceRgI (34), but the rodent NKR-P1s also have

a CxCP motif in their cytoplasmic domain, which has also

been found in the cytoplasmic domains of CD4 and CD8 and

is thought to interact with p56lck (35). One report demon-

strated a direct interaction of rat NKR-P1 and p56lck (36). The

human NKR-P1A lacks the CxCP motif (37, 38).

Stimulatory receptors recognizing MHC class I molecules

Each family of inhibitory receptors contains MHC class I-spe-

cific stimulatory receptors. In the Ly49 family these are the

Ly49D and Ly49H receptors (Table 1) (39, 40). The ligand for

Ly49D is the H2-Dd molecule (41). A class I specificity for

Ly49H has not yet been assigned. NKG2C and NKG2E are

stimulatory members of the CD94/NKG2 family (Table 1) (20,

25, 42). They recognize (as do their inhibitory counterparts)

the Qa-1 molecule in mice (25) and the HLA-E molecule in

humans (23). The ‘‘short’’ KIR (KIR2DS and KIR3DS) are

stimulatory members of the KIR family (43–45). KIR2DS rec-



Diefenbach & Raulet ¡ Target cell recognition by NK cells

ognizes HLA-C, while the specificity of KIR3DS is currently

unclear. Interestingly, all these stimulatory counterparts of the

inhibitory NK-cell receptors use a single adapter protein,

KARAP/DAP12 (25, 30, 40, 46), allowing interactions with

ZAP70 and syk-family kinases.

In contrast to the non-MHC class I-specific stimulatory re-

ceptors but very similar to the inhibitory receptors, the MHC

class I-specific stimulatory receptors are expressed in a vari-

egated and predominantly stochastic fashion by subsets of NK

cells ((39, 47, 48), reviewed in (28)). To date, an under-

standing of the adaptive value of NK-cell stimulatory recep-

tors specific for MHC class Ia ligands remains elusive.

Stimulatory receptors recognizing non-MHC class I molecules

Several stimulatory NK-cell receptors with no apparent speci-

ficity for MHC class I molecules have been reported (Table 1).

However, in most cases the cellular ligands for these receptors

have yet to be identified and the biological function of these

receptors remains unclear. In contrast to the MHC class I-

recognizing stimulatory receptors, these stimulatory receptors

are expressed by most or all NK cells.

Recently, Moretta and colleagues identified three Ig-like

stimulatory NK-cell receptors expressed by human NK cells,

NKp46 (49, 50), NKp44 (51, 52) and NKp30 (53), that

are involved in the recognition of various tumor cell lines.

The NKp30 cDNA had been described earlier as a protein

of unknown function encoded in the TNF cluster of the

human MHC complex and had been assigned the name

1C7 (54, 55). NKp46 and NKp30 are constitutively ex-

pressed by all human peripheral blood NK cells, and their

expression seems to be confined to the NK-cell compart-

ment (49, 53). NKp44 is not expressed by resting human

NK cells but is upregulated by all NK cells after stimulation

with interleukin (IL)-2 (51). NKp44 was also detected on

some human gd T-cell lines (51). In the case of NKp46, a

mouse homolog has been identified and has been named

mouse activating receptor-1 (MAR-1) (56). For signaling,

NKp46 and NKp30 associate with FceRgI and CD3z,

whereas NKp44 associates with KARAP/DAP12 (52, 53).

Triggering of any of these receptors resulted in the induc-

tion of cytotoxic activity and intracellular Ca2π mobilization

(49, 53). Stimulation of IFN-g and TNF-a production after

receptor cross-linking could only be demonstrated for

NKp46 (49). Cytotoxicity against various tumor cell lines

was significantly blocked by including monoclonal anti-

bodies specific for one or a combination of these receptors

in the assay, suggesting that these tumor cells express

ligands for NKp46, NKp30 or NKp44 (50). Taken together,
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the available data suggest an important role for these recep-

tors in recognizing tumor cells. Very recently, a provocative

report by Mandelboim et al. reported that human NKp46

directly recognizes viral hemagglutinins, including the in-

fluenza virus hemagglutinin and the Sendai virus hemag-

glutinin neuraminidase (57). Furthermore, expression of

viral hemagglutinins on target cells induced target cell lysis

by human peripheral blood NK cells and NK cell clones.

Mandelboim et al. could not detect binding of soluble

NKp46 to the Epstein–Barr virus-transformed B-cell line

LCL721.221, though lysis of 721.221 cells was reportedly

inhibited by a monoclonal antibody to NKp46 (50, 51). It

remains to be directly determined whether tumor cells ex-

press ligands for NKp46.

All of the MHC class I-specific stimulatory receptors, as

well as the NKp44 receptor, use the KARAP/DAP12 molecules

for signaling (Table 1). Recently, two groups reported loss of

function mutants of KARAP/DAP12 (58, 59). The develop-

ment of NK cells is unaltered in these mice. Tomasello et

al. used a ‘‘knock-in’’ strategy to functionally inactivate the

KARAP/DAP12 signaling pathway. This strategy preserved the

expression of KARAP/DAP12 as well as the interaction with

and expression of associated receptors. Using this approach,

the effects of abolishing KARAP/DAP12 signaling on the for-

mation of the inhibitory receptor repertoire in NK cells could

be examined without abolishing cell surface expression of the

relevant stimulatory receptors. The mutation did not alter the

number of cells expressing all tested Ly49 and NKG2/CD94

receptors, nor the cell surface levels of these receptors (58).

However, redirected lysis of FcRgπ target cells mediated by a

monoclonal antibody specific for Ly49D was totally abrogated

in NK cells from the mutant mice. Furthermore, NK-cell lysis

of Chinese hamster ovary tumor cells, which is reported to

be partially dependent on Ly49D (60, 61), was greatly re-

duced in KARAP/DAP12-deficient mice (58, 59). Interest-

ingly, NK-cell lysis of other tumor targets (YAC-1, Bw15.02,

RMA, RMA/S, J774) was completely unaffected by the KAR-

AP/DAP12 mutations. Surprisingly, inactivation of KARAP/

DAP12 led to a dramatic increase of dendritic cells in mucosa

and skin (58) and a striking impairment in the priming of

CD4π T cells (59) and CD8π T cells (58). The latter results

suggest that KARAP/DAP12 has non-redundant functions in

a non-NK-cell compartment.

The prototype mouse NK-cell antigen NK1.1 is encoded

by the Nkr-p1c gene (62, 63). Three highly related genes, Nkr-

p1a, Nkr-p1b and Nkr-p1c, have been identified in mice and rats

(64–69). NKR-P1A and NKR-P1C are stimulatory isoforms,

whereas NKR-P1B is an inhibitory isoform (69). Only a



Diefenbach & Raulet ¡ Target cell recognition by NK cells

single human NKR-P1 homolog has been identified to date

(37). The Nkr-p1 genes map to mouse chromosome 6 (70),

human chromosome 12p12-p13 (37, 71) and rat chromo-

some 4 (72) in a region that has been designated the ‘‘NK

gene complex’’ (73). Mouse NKR-P1C associates with FceRgI

for downstream signaling (34). Additionally, rodent NKR-P1

proteins have a CxCP motif in their cytoplasmic domain pro-

viding a docking site for p56lck (35, 36). Cross-linking of

NKR-P1C activates NK cells (74–76). Analysis of a mutant

NK-cell line suggested that NKR-P1 receptors participate in

recognition of certain tumor cell lines (77). The physiologic-

ally relevant ligands for NKR-P1 receptors remain unknown,

however.

The NKG2D receptor

The best characterized stimulatory NK receptor system in

mouse and human is the NKG2D receptor. Recent progress in

understanding this receptor system has come from the identi-

fication of cellular ligands by our group and others (33, 78–

80). The lectin-like type II transmembrane receptor NKG2D

was first identified 10 years ago as a human cDNA clone in

the same study that yielded the first NKG2A, B and C cDNAs

(20). Subsequently, we and others identified the murine

NKG2D homolog (81–83). The Nkg2d gene is localized in the

mouse NK gene complex (chromosome 6) between the Cd94

and Nkg2e genes (82). Despite its name and its genomic loca-

tion in a cluster of Nkg2 genes, NKG2D differs dramatically

in sequence from the other NKG2 proteins (only 24.5%

identity in amino acid sequence), does not associate with

CD94 (31) (Diefenbach & Raulet, unpublished data), and

does not recognize Qa-1/HLA-E. It therefore appears that the

common designation of NKG2 for all these proteins is mis-

leading.

Very recently an unligated X-ray crystal structure of mouse

NKG2D was reported (84). NKG2D retains an overall struc-

ture that is surprisingly homologous to other members of the

C-type lectin family, including CD94, Ly49A, rat MBP-A and

CD69, despite relatively low sequence identity. The NKG2D

monomer contains two b-sheets, two a-helices and four di-

sulfide bonds. The most obvious difference between NKG2D

and the other C-type lectins is a newly identified b-strand

(named 5ø), which is part of loop 5. Compared to the other

C-type lectins, the loops 5ø and 5 in NKG2D are confor-

mationally restricted due to the intervening 5ø b-strand. This

could have consequences in ligand binding (84). Interest-

ingly, an analysis of the surface electrostatic potentials re-

vealed a very extensive central electropositive surface stripe
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that spans the dimer interface as well as flanking electroposi-

tive patches. Intriguingly, the top surfaces (relative to mem-

brane location) of the human MHC class I chain-related

(MIC) A structure (85) as well as the predicted MICB struc-

ture (84) revealed a complementary electrostatic profile that

may serve as the interacting surface with NKG2D. MICA and

MICB are ligands for NKG2D (see below).

The KAP/DAP10 adapter

NKG2D has two charged residues in the deduced transmem-

brane domain leading to the prediction that NKG2D is a

stimulatory receptor that uses these residues to associate

with an adapter molecule (81, 82). However, none of the

known adapter molecules involved in NK-cell signaling (i.e.

FceRgI, CD3z and KARAP/DAP12) associate with NKG2D

(31). Two recent reports described a new adapter molecule

designated DAP10 (31) or KAP10 (32). Interestingly, the

Kap/Dap10 gene and the Dap12 gene are localized less than

150 bp apart in opposite transcriptional orientations on hu-

man chromosome 19q13.1 and mouse chromosome 7 (31,

59). KAP/DAP10 is expressed in several human NK-cell

lines, a myeloid cell line (U937) and in CD8π T cells (32).

Wu et al. demonstrated that KAP/DAP10 associates with

NKG2D on the surface of human NK-cell lines (31, 86). In

contrast to the other known adapters for NK-cell signaling,

KAP/DAP10 does not have a consensus ITAM motif in its

cytoplasmic domain. Instead, the KAP/DAP10 cytoplasmic

domain has a YxxM motif, which has been shown to recruit

the p85 subunit of PI 3-kinase (31, 32, 87). After NKG2D

cross-linking, KAP/DAP10 is phosphorylated. Phosphoryl-

ated KAP/DAP10 is able to recruit the p85 subunit of PI 3-

kinase, resulting in the activation of Akt (32). Chang et al.

showed that KAP/DAP10 also interacts with another adapter

protein, Grb2 (32). Interestingly, the intracellular domain of

CD28 also has a YxxM motif, suggesting that the NKG2D-

KAP/DAP10 receptor complex has a co-stimulatory as op-

posed to a primary triggering function (86). According to

a recent report, signaling via PI 3-kinase plays a pivotal role

in the pathway that triggers cytotoxicity of NK cells (88).

Pharmacological inhibition of PI 3-kinase blocked killing by

preventing mobilization of perforin and granzyme B to the

cell–cell interface between NK92 cells (an NK line) and Raji

target cells. The authors implicated the Rho-family GTP-

binding protein Rac1 and the p21-activated kinase 1 (PAK1)

as downstream targets of PI 3-kinase with Rac1 being up-

stream of PAK1. Expression of a dominant negative Rac1 or

a kinase-deficient PAK1 mimicked the effect of pharmaco-
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logical inhibition of PI 3-kinase, whereas constitutively ac-

tive Rac1 rescued killing mediated by cells treated with PI

3-kinase inhibitors (88). Downstream of PAK1 is the extra-

cellular-signal-regulated kinase (ERK) mitogen-activated pro-

tein kinase (MAPK) (88, 89). Currently it is not clear

whether this intracellular signaling pathway is a general one

for triggering NK cytotoxicity or is specific to the undefined

receptor involved in the NK92-Raji target cell interaction.

Another report showed that the Rac1 pathway can be acti-

vated by Vav (90, 91). Activation of Vav is thought to be

triggered by src- or syk-family protein tyrosine kinases,

which are involved in signaling by Fc receptors and the B

and T-cell antigen receptors. The identity of the upstream

receptor systems that activate PI 3-kinase and Vav remain

unclear. However, the role of PI 3-kinase in triggering cyto-

toxicity, in combination with the finding that the KAP/

DAP10 receptor system recruits and activates PI 3-kinase,

suggests that NKG2D may serve as a major triggering recep-

tor for cytotoxicity.

NKG2D receptor expression

The expression and regulation of NKG2D has not been fully

investigated. However, it is clear from the available data that

NKG2D is not restricted to NK cells but functions as well

in other cell types. In addition, there seem to be significant

differences in the expression pattern between mice and

humans. In mice and humans, the NKG2D receptor is consti-

tutively expressed by all NK cells (33, 78). It appears that

expression of NKG2D by NK cells is not markedly regulated

by stimulating cytokines such as IL-12, IFN-g, IFN-a/b or

IL-2 (33). Little has been reported concerning the regulation

of NKG2D expression by human NK cells.

Importantly, certain T-cell populations also express NKG2D.

In mice, resting conventional CD4 and CD8 T cells do not

express significant levels of NKG2D, but the receptor is

strongly upregulated by T-cell receptor cross-linking in all

CD8π but not CD4π T cells (33). Co-stimulation with anti-

CD28 did not further increase NKG2D expression by CD8π T

cells. In line with these data, we observed upregulation of

NKG2D expression by CD8π T cells responding in vivo at the

peak of an infection with lymphocytic choriomeningitis virus

(C. W. McMahon, A. Diefenbach, D. H. Raulet, unpublished

observations). These findings indicate that NKG2D is induced

in mouse CD8π T cells activated through the T-cell receptor.

In contrast, it is reported that all human CD8π T cells express

NKG2D constitutively, without activation (78, 92). As in

mice, CD4π T cells do not express NKG2D (78).
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In mice and humans, many gd T cells express NKG2D. In

mice, NKG2D expression appears to be primarily restricted

to the subset of gd T cells that expresses CD44 (A. M. Jamie-

son, A. Diefenbach, D. H. Raulet, unpublished data), whereas

in humans, it is reported that all gd T cells express NKG2D

(78). Many mouse CD1-restricted T cells also express NKG2D

(A. M. Jamieson, A. Diefenbach, D. H. Raulet, unpublished

data), but comparable analysis of human CD1-restricted T

cells has not been reported.

Finally, we presented data showing that NKG2D is ex-

pressed by activated macrophages in mice (33). Whereas

resting peritoneal macrophages did not express NKG2D,

stimulation with lipopolysaccharide (LPS), IFN-g or IFN-a/b

strongly upregulated NKG2D protein and mRNA in these cells

(33) (Diefenbach & Raulet, unpublished data). To date, it is

not clear whether human myeloid lineage cells also express

NKG2D after appropriate stimulation.

Ligands for NKG2D

Recently, several families of ligands have been described for

NKG2D, all of which are distantly related to MHC class I mol-

ecules. The identification of these ligands has allowed a more

detailed analysis of this receptor system than of any other

stimulatory NK-cell receptor.

Ligands for human NKG2D

The MIC family of proteins

Bauer et al. found that a soluble multimeric version of the

MHC class I-like molecule MICA binds to virtually all NK

cells. The structure recognized by MICA was identified as hu-

man NKG2D (78). The MICA and the closely related MICB

genes are located near HLA-B in the human MHC (93). The

MIC proteins contain three MHC-like domains, but in con-

trast to class Ia and most class Ib MHC molecules they do not

associate with b2-microglobulin and probably do not bind

peptide (85). Under normal circumstances, the expression

of MIC proteins is highly restricted to the human intestinal

epithelium (gastric, small and large intestine). Additionally,

in the subcapsular cortex of infant thymi a population of stel-

late MIC expressing epithelial cells could be identified (94).

Interestingly, the 5ø flanking regions of the MIC genes re-

portedly contain heat shock promoter elements similar in

some respects to those in the Hsp70 promoter (94). Indeed,

exposure of a MIC-expressing tumor cell line (HeLa) to heat

shock led to a moderate increase of MIC mRNA (94). More

significantly, high MIC expression could be detected on many
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Fig. 1. Relationship between NKG2D ligand families and various
MHC class I molecules. The tree dendrogram illustrates the relationship
between the four families of mouse and human NKG2D ligands and
classical and non-classical MHC class I molecules. The distance from
each end-point of the tree to another end-point is a measure of the
similiarity of the sequences of two compared proteins. Sequences from
the (NCBI database) were aligned with Clustal W, and the dendrogram
was generated with Phylip 3.572.

human epithelial tumors (95). Recently, Groh et al. demon-

strated that cultured fibroblasts and endothelial cells infected

with cytomegalovirus (CMV) strongly upregulated MIC ex-

pression (92). Increased MIC expression could also be de-

tected in lung specimens with interstitial pneumonia caused

by CMV (92). These data suggested that MIC proteins are

upregulated in response to cellular stress, transformation

and/or viral infection. MIC expression can thus be viewed as

an identification system that cells use to provoke attack by the

immune system.

The family of UL16-binding proteins (ULBPs)

A recent report characterized a second family of ligands for

human NKG2D (80). The authors identified cellular proteins

that bind to the human CMV protein UL16, which is a type

I transmembrane protein known to be expressed by CMV-

infected cells. They expression-cloned a novel family of

cDNAs that includes three members, designated ULBP1, 2 and

3. The deduced amino acid sequences of the three ULBPs are

55–60% identical (Fig. 1). The extracellular domain structure
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shows similarity to the a1 and a2 domains of MHC class I

molecules and comprises a overall amino acid identity of

<25% to human HLA molecules (Fig. 1). The ULBPs are gly-

cosylphosphatidyl inositol (GPI)-anchored cell surface pro-

teins. It is noteworthy that soluble UL16 binds to ULBP1,

ULBP2 and MICB but not to ULBP3 and MICA (80). As as-

sayed by RT-PCR, ULBP mRNA was detected in a wide range

of tissues, including heart, brain, lung, liver, testis, lymph

node, thymus, tonsil and bone marrow. ULBP transcripts were

also abundant in fetal heart, brain, lung and liver. However,

in some tissues/cells where high ULBP mRNA was detected,

such as the Raji cell line, no cell surface ULBP expression was

detected with a monoclonal antibody (80). While additional

studies will be necessary to understand how ULBPs are regu-

lated, the current data raise the possibility that ULBP cell sur-

face expression is regulated in part at a post-transcriptional

level. Employing soluble (s) ULBPs, Cosman et al. demon-

strated that sULBPS bind to all human NK cells and to a hu-

man NK-cell line. Further analysis demonstrated that the sol-

uble ligands bind to human NKG2D. In addition, exposure of

NK cells either to sULBPs or to cells expressing ULBPs resulted

in activation of the NK cells via engagement of NKG2D (80).

An interesting hypothesis is that UL16 expressed by CMV-

infected cells may protect the infected cells from NKG2Dπ

effector cells by masking cellular ULBPs expressed by the

same cell (80). UL16 may therefore provide CMV with a po-

tent immune evasion strategy to prevent lysis of infected cells

by NK and CD8π T cells.

Ligands for mouse NKG2D

Interestingly, despite considerable efforts, no MIC homologs

have been identified in mice. The syntenic region of the

mouse MHC contains fewer genes, and it is possible that no

functional orthologs of the MIC genes exist in this region

(96). Alternatively, it remains possible that a murine func-

tional ortholog exists, but exhibits little direct sequence

identity with MIC; this situation was observed in the case of

HLA-E versus Qa-1, which exhibit no more overall sequence

similarity than any mouse–human MHC pair, but clearly carry

out the same function (Fig. 1) (24).

Employing fluorescently labeled, soluble tetrameric

NKG2D we (33) and others (79) recently expression cloned

ligands for the mouse NKG2D receptor. Surprisingly, two re-

lated families of proteins were identified as ligands, each pre-

viously cloned but of unknown function: the retinoic acid

early-1 (Rae1) proteins (97–99) and H60, a minor histocom-

patibility antigen (100).
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Fig. 2. Expression of the H60 NKG2D-
ligand by thymocytes from BALB/c mice.
A. Freshly isolated thymocytes from
C57BL/6 and BALB/c mice were stained with
monoclonal antibodies to CD4 and CD8 and
with a streptavidin–phycoerythrin-
complexed NKG2D tetramer (filled
histograms). Staining with an irrelevant
tetramer (solid line) and blocking of the
NKG2D tetramer staining (dashed line) with
an excess of unlabeled tetramer was
performed to show the specificity of the
staining. The histograms show electronic
gating on the designated cell populations.
B. Total thymocyte RNA (20 mg) from
C57BL/6 and BALB/c mice was fractionated
by electrophoresis in an 0.8% agarose gel and
immobilized on a charged nylon membrane.
The membrane was hybridized with a full
length H60 cDNA probe (top panel),
rehybridized (after stripping of the
membrane) with a Rae1b probe (middle)
and finally (after restripping of the
membrane) hybridized with a b-actin probe
as a loading control (bottom).
[Fig. 2A reproduced from Diefenbach A,
Jamieson AM, Liu SD, Shastri N, Raulet DH.
Ligands for the murine NKG2D receptor:
expression by tumor cells and activation of
NK cells and macrophages. Nat Immunol
2000;1:119–126.]

The Rae1 family of proteins

There are four highly related members of the Rae1 family

(Rae1a–d), each encoded by a separate gene (Raet1a–d) (79,

97, 98). The Raet1 cDNAs were originally cloned based on

the inducibility of one member in F9 embryocarcinoma cells

by retinoic acid (97, 98). Retinoic acid failed, however, to

induce Rae1 expression in selected Rae1-negative tumor cell

lines that we tested (Diefenbach & Raulet, unpublished data).

Interestingly, Rae1 mRNAs were not detected in various nor-

mal adult tissues (98). Nevertheless, Rae1 mRNA is fre-

quently upregulated in mouse tumor cell lines (33) (Diefen-

bach & Raulet, unpublished data). Rae1 mRNA is also ex-

pressed at low levels throughout embryos at day 9 of gestation

and in the brain/head region of day 10–14 embryos, raising

the possibility that Rae1 plays a role in embryonic develop-

ment (98, 99). The available data suggest that Rae1 expres-

sion is extinguished after the embryonic stages, only to be
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re-expressed during the process of malignant transformation

to tag these cells for attack by the immune system.

The H60 minor histocompatibility antigen

H60 is encoded by a unique gene, which encodes a dominant

minor histocompatibility antigen in the response of C57BL/6

T cells to BALB.B cells (100). The response to H60 is a typical

MHC-restricted response in which the LTFNYRNL peptide,

which is located near the N-terminus of H60, is presented by

the Kb MHC class I molecule (100). H60 expression was not

detected in any cells tested from adult C57BL/6 mice, al-

though an H60 gene can be detected in these mice by genom-

ic Southern blotting (N. Shastri, unpublished data). H60 ex-

pression was detected in Con A or LPS lymphoblasts (mainly

by CD4π T cells and CD19π B cells) (33, 100) and at high

levels on most BALB/c thymocyte subsets, especially CD8

single positive and double positive cells (Fig. 2) (33).



Diefenbach & Raulet ¡ Target cell recognition by NK cells

Previous studies mapped both H60 and Raet1 genes to mu-

rine chromosome 10, raising the possibility that these genes

comprise a related gene family (97, 100). Although H60 and

Rae1 proteins exhibit a similar domain structure, the amino

acid sequences are only distantly related (Fig. 1), exhibiting

an overall amino acid identity of 25.2% and a similarity of

39.1% (33). The extracellular segment of both proteins

shares similarity with the a1 and a2 domains of MHC class I

molecules (33, 99). Most Rae1 is GPI anchored to the mem-

brane (33, 79, 98) whereas H60 shows no evidence of GPI

linkage and may be a typical transmembrane protein (33).

These novel ligands can not be considered homologs of

MIC, because their chromosomal location is non-syntenic,

they exhibit a different domain structure, and are consider-

ably divergent in sequence from MIC proteins (Fig. 1). How-

ever, the human ULBP genes exhibit a similar domain struc-

ture, and are located on human chromosome 6 in a region

that is syntenic to the region of mouse chromosome 10 that

encodes H60 and Rae1. Like Rae1 proteins, ULBPs are GPI-

linked proteins. Therefore, although the ULBPs are only dis-

tantly related in sequence to Rae1 and H60 (22–24% amino

acid identity), it is tempting to speculate that Rae1, H60 and

ULBP define a related family of ancient MHC class I-like gene

products that function as ligands for various effector cells in

the innate and adaptive immune systems.

Biological function of the NKG2D receptor–ligand system

NK-cell activation

Expression of MIC, Rae1, H60 or ULBPs on target cells led to a

strong induction of NK cytotoxicity (33, 78–80). Interestingly,

activation of human NK cells by cell lines transfected with

NKG2D ligands overrode inhibitory signaling mediated by tar-

get cell MHC class I molecules (78, 80). It remains to be deter-

mined whether activation through NKG2D is completely re-

fractory to inhibitory signaling or alternatively represents a

strong stimulatory signal that simply shifts the balance of sig-

naling sharply in favor of NK-cell activation. In addition to

stimulating NK-cell cytotoxicity, ectopic expression of Rae1 or

H60 by stimulator cells led to a potent NKG2D-dependent

stimulation of IFN-g release from mouse NK cells (33). Fur-

thermore, triggering of NKG2D by immobilized ULBP2 led to

a potent induction of GM-CSF, TNF-b and I-309 (80), the latter

a CC chemokine. In the latter experiments, there was a strong

synergistic effect with IL-12 (80). The role of NKG2D in cyto-

kine production requires further clarification, in light of a re-

port that immobilized anti-NKG2D failed to induce GM-CSF or

IFN-g production from a human polyclonal NK-cell line (86).
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Macrophages

As discussed above, stimulation of macrophages (MØ) and

MØ-cell lines with LPS led to a strong induction of NKG2D

mRNA and protein ((33) and our unpublished data). Co-

stimulation of LPS-activated MØ with stimulator cells ec-

topically expressing Rae1 or H60 led to a synergistic increase

of nitric oxide and TNF-a production from MØ (33). These

findings suggest that NKG2D-mediated activation of MØ, in

addition to NK cells, may play a role in the innate immune

response.

CD8π T cells

Virtually all human CD8π T cells express NKG2D (78). Groh

et al. recently reported that NKG2D is a very potent co-stimu-

latory receptor on human CD8π T cells (92). Human fibro-

blasts infected with CMV strongly upregulated MIC expres-

sion, whereas MHC class Ia expression was significantly

downregulated. CMV-specific CD28ªCD8π T-cell clones ex-

hibited stronger killing of CMV peptide-pulsed target cells if

the target cells were transfected with MICA, but did not kill

the transfected target cells in the absence of CMV peptide. In

assays of cytokine production by these CD8π T cells, there

was also a strong synergistic effect when T-cell receptors and

NKG2D were simultaneously stimulated. The co-stimulation

was particularly marked for IL-2 production (92), which was

not detectably produced in the absence of NKG2D-mediated

co-stimulation (92, 101). Thus, the NKG2D receptor pro-

vides a potent co-stimulatory signal for human CD28ªCD8π

ab T cells.

A fourth strategy of immune recognition

Due to the paucity of information concerning ligands for the

stimulatory NK-cell receptors, the ‘‘textbook view’’ in recent

years has been that NK cells are regulated primarily by inhibi-

tory receptors. In this conception, NK cells are ‘‘tonically’’

activated by ligands expressed by normal cells, requiring con-

tinual inhibition to prevent them from mediating immuno-

pathology. Indeed, it is clear that certain normal (i.e. uninfec-

ted, untransformed) class I-deficient cells are sensitive to NK-

cell attack, suggesting that certain normal cell types, at least,

express ligands capable of activating NK cells as long as in-

hibitory signals are absent (102–105). However, since not all

normal cells are susceptible to NK-cell attack, and many tu-

mor cells are more highly sensitive to NK cells than are nor-

mal cells, it was proposed that regulated expression of stimu-

latory ligands might serve a key role in determining the out-

come of the NK cell target–cell interaction (105–107). The
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lessons learned from the NKG2D receptor–ligand system pro-

vide strong support for the notion that regulated expression

of stimulatory ligands (e.g. MIC and Rae proteins) plays a

central role in regulating NK-cell activity. Furthermore, the

findings that NKG2D expression is upregulated in MØ, CD8π

T cells and possibly gd T cells by cellular activation suggests

that control of receptor expression can also serve as a critical

regulatory step in ensuing immune reactions.

The present data suggest that normal cells are equipped

with the capacity to detect ‘‘abuse’’, including infection,

transformation and stress, and respond by upregulating

ligands for NKG2D such as MIC and Rae1 and probably other

ligands that bind to distinct immune receptors. This type of

specificity can be viewed as the most recently appreciated of

at least four strategies of immune recognition. One of the

oldest strategies in evolutionary terms is exemplified by the

Toll receptor system. In this form of recognition, immune

receptors specific for structures associated with microbes, in-

cluding bacterial cell wall constituents, bacterial flagella and

bacterial DNA, stimulate an important innate response by MØ

and other cells ((108–112) and for review (113)). This form

of recognition has been described as being specific for ‘‘mol-

ecular patterns’’ associated with pathogens (114, 115). A sec-

ond strategy is represented by the adaptive immune system,

which is endowed with the capacity to respond to essentially

any non-self molecular entity by virtue of an enormous mol-

ecular diversity of receptor sequences. Adaptive immunity is

clearly a relatively recent event in evolutionary terms. A third

strategy to be considered is exemplified by the capacity of

NK cells to recognize missing self, that is, to attack cells that

downregulate MHC expression (116). This strategy can be

viewed as a complementary strategy of the adaptive response,

since it presumably evolved to protect the host from cells that

evade recognition by conventional CD8π T cells. The impli-

cation that missing self recognition is a relatively recent adap-

tation has always been disturbing, however, because NK cells

are usually considered to be relatively ancient cells in evol-

utionary terms (117). A resolution is suggested by the exist-

ence of the fourth class of recognition, represented by the

capacity of NK cells and other immune cells to respond to
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‘‘induced-self’’ ligands such as Rae1 and MIC, expression of

which is regulated by various forms of cellular abuse. It is

attractive to suggest that the latter form of recognition

evolved first, and represents the original principle of recog-

nition by primordial NK cells. The inhibitory receptor system

may have been evolved later as a complementary scheme to

further regulate NK-cell activity.

It is evident that induced-self antigens can be of suf-

ficient strength, at least in the case of the NKG2D receptor-

ligand system, to override inhibitory signals provided by

inhibitory receptors specific for MHC class I molecules (78,

80) (Diefenbach & Raulet, unpublished data). Indeed, as

mentioned above, further experiments will be necessary to

determine the extent to which activation through the

NKG2D receptor can be modulated by inhibitory signals.

Nevertheless, with the NKG2D precedent in mind, it is at-

tractive to suggest that the inhibitory and stimulatory re-

ceptor systems expressed by NK cells can operate with

some independence. Thus, a target cell could become sus-

ceptible to NK-cell attack by upregulating Rae1 while

maintaining normal class I expression, or by downregulat-

ing class I while maintaining ‘‘normal’’ expression of

ligands that stimulate NK cells. Some tumor cells are ex-

pected to undergo both alterations, downregulating class I

while at the same time upregulating expression of stimu-

latory ligands. Such cells are likely to become especially

sensitive to NK-cell attack. A likely example is the YAC-1

tumor cell line, which is especially sensitive to NK cells

and is known to express abnormally low levels of class I,

as well as to express substantial levels of Rae1 (33, 118)

(Diefenbach & Raulet, unpublished data).

Important directions for future studies will include the

analysis of mechanisms that regulate expression of the in-

duced-self ligands in tumor cells and infected cells. Also of

great interest is the nature of the ligands for other stimulatory

receptors (i.e. NKp30, NKp44, NKp46, NKR-P1s) and their

regulation by transformation and infection. In addition, a

greater understanding of the signaling pathways responsible

for activation and inhibition and how they interact will be

necessary to fully understand NK-cell recognition.
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