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Introduction
Accurate cell division is no trivial task: cells need to duplicate their
genomic material, correct mistakes made by sloppy DNA
polymerases, repair damage caused by harsh environments and yet
still distribute their chromosomes into identical daughter cells.
Errors in this program can be deadly for the cell, or, if they result
in transformation, have detrimental effects on the organism. To
prevent this from happening, the cell division machinery is subject
to multiple layers of regulation, with ubiquitylation being of central
importance.

The post-translational modification with ubiquitin controls the
stability, activity or localization of numerous proteins, including
multiple cell cycle regulators. It is catalyzed by an enzymatic
cascade composed of E1 ubiquitin-activating enzymes, E2
ubiquitin-conjugating enzymes and E3 ubiquitin ligases (Deshaies
and Joazeiro, 2009; Rotin and Kumar, 2009; Schulman and Harper,
2009; Ye and Rape, 2009). Together, these enzymes promote the
formation of an isopeptide bond between a lysine residue within
the substrate and the C-terminus of ubiquitin. The covalent addition
of a single ubiquitin, referred to as monoubiquitylation, can alter
protein localization or its interactions (Mukhopadhyay and
Riezman, 2007). Attachment of further ubiquitin molecules to one
of the seven lysine residues or the N-terminus of a substrate-linked
ubiquitin results in formation of polymeric chains (Fig. 1) (Ye and
Rape, 2009). When connected through lysine 48 (K48) of ubiquitin,
these chains trigger degradation of the substrate by the proteasome
(Chau et al., 1989), but when linked through K63, they act as a
molecular scaffold that orchestrates kinase activation or DNA
repair (Mukhopadhyay and Riezman, 2007). K48- and K63-linked
ubiquitin chains have long been recognized as essential regulators

of cell division, as they provide a signal for the degradation of
inhibitors of cell cycle progression or the activation of cell cycle
checkpoints, respectively (Fig. 1).

Among the ~600 human E3s, two enzymes – the SCF (Skp1–
cullin1–F-box) and APC/C (anaphase-promoting complex/
cyclosome) – are well known for their roles in cell cycle control.
These E3s share similar domain architectures, as they are
composed of a cullin (in the case of SCF) or cullin-related (in the
case of the APC/C) scaffold, a RING domain for binding the
ubiquitin-charged E2 and a module for substrate recruitment
(Box 1) (Petroski and Deshaies, 2005a; Schreiber et al., 2011).
The SCF and APC/C regulate cell division by triggering the
degradation of cyclins, Aurora or Polo-like kinases, Cdc25
phosphatases and cyclin-dependent kinase (CDK) inhibitors
(Petroski and Deshaies, 2005a; Sullivan and Morgan, 2007).
Despite similarities in structure and function, the regulatory
mechanisms that ensure proper activation of the SCF and the
APC/C are strikingly different: in the case of SCF, the substrate
usually needs to be phosphorylated to be recognized by the E3,
and mutations in the phosphorylation sites of SCF substrates can
result in unrestricted cell division (Petroski and Deshaies, 2005a).
By contrast, most APC/C substrates do not require post-
translational modifications for E3 binding (Sullivan and Morgan,
2007). Instead, it is the APC/C itself whose activity is controlled
at distinct stages of the cell cycle program through APC/C
phosphorylation or the binding of inhibitors to the enzyme.

Analyses of the SCF and the APC/C have further shown a
reciprocal relationship between ubiquitylation enzymes and the
cell cycle machinery: E3s regulate cell division but, at the same
time, the cell cycle controls ubiquitylation. Recent studies have
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provided further insight into this intricate connection by revealing
the importance of atypical ubiquitin chains, new means of
substrate and E3 regulation, and crosstalk between multiple cell-
cycle-dependent ubiquitylation enzymes. In this Commentary,
we will review these emerging regulatory mechanisms of
ubiquitin-dependent cell cycle control. In addition, we will discuss
how cells utilize these processes to accomplish their most
important task – the accurate distribution of genomic material to
their progeny.

Diversity: new signals in cell cycle control
Ubiquitin-dependent proteolysis of cell cycle regulators helps to
establish irreversible cell cycle transitions and is a prerequisite for
the unidirectional progression through the cell cycle program.
Classic experiments showed that proteasomal degradation of yeast
cell cycle regulators depends on K48-linked ubiquitin chains (Chau
et al., 1989; Glotzer et al., 1991; Thrower et al., 2000), and K48 is
the only lysine residue of ubiquitin that is required for cell division
in yeast (Sloper-Mould et al., 2001). In agreement with these
observations, the yeast SCF and APC/C trigger degradation of
their substrates through the formation of K48-linked ubiquitin
chains (Petroski and Deshaies, 2005b; Rodrigo-Brenni and Morgan,
2007). It thus came as a surprise that, in higher eukaryotes, the
APC/C was found to assemble ubiquitin chains of a different
topology, namely those linked through K11, instead of K48-linked
chains (Jin et al., 2008).

K11 linkages had been previously detected in biochemical
experiments and cells, yet their functions remained poorly
understood (Baboshina and Haas, 1996; Xu et al., 2009). Because
levels of K11 linkages increase in response to proteasome

inhibition, it has been suggested that they are involved in mediating
proteolysis (Bennett et al., 2007; Kaiser et al., 2011; Xu et al.,
2009; Ziv et al., 2011). Indeed, when homogeneous K11-linked
ubiquitin chains were discovered as the product of the human
APC/C, it was found that they target mitotic regulators for
proteasomal degradation (Jin et al., 2008). Using linkage-specific
antibodies, it was observed that the abundance of K11-linked
chains increases dramatically when cells activate the APC/C during
mitosis (Matsumoto et al., 2010). Conversely, a blockade in K11-
linked chain formation stabilizes substrates of the APC/C and
causes a cell cycle arrest that is reminiscent of APC/C inhibition
(Jin et al., 2008; Williamson et al., 2009). Thus, in higher
eukaryotes, K11-linked ubiquitin chains constitute a proteolytic
signal that is required for cell division.

The APC/C catalyzes the formation of K11-linked chains by
employing a pair of dedicated E2 enzymes, the chain-initiating
UBE2C (also known as UBCH10) and the chain-elongating UBE2S
(Ye and Rape, 2009). To rapidly catalyze chain initiation (i.e. the
modification of lysine residues on the substrate with ubiquitin)
UBE2C depends on stretches of conserved and positively charged
substrate residues that are referred to as initiation motifs (Jin et al.,
2008; Williamson et al., 2011). Initiation motifs are distinct from
the D-boxes that mediate the binding of a substrate to the APC/C
(Glotzer et al., 1991), and blocking initiation motifs can inhibit
degradation without affecting the affinity of a particular substrate
for the APC/C (Williamson, 2011). Following chain initiation,
UBE2S rapidly extends K11-linked ubiquitin chains (Garnett et
al., 2009; Williamson et al., 2009; Wu, T. et al., 2010). UBE2S
does not recognize the substrate directly, but instead depends on
the recognition of a specific surface on ubiquitin, the TEK-box, for
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Fig. 1. Diversity of ubiquitin chain topologies with roles in cell cycle
control. Ubiquitin chains of different topologies have distinct functional
consequences. When linked through K48 of ubiquitin, ubiquitin chains
trigger proteasomal degradation. K48-linked chains are important, for
example, at the G1–S transition, when they trigger the degradation of
CDK2 inhibitors to promote S-phase entry. K11-linked ubiquitin chains
are assembled by the APC/C and also trigger degradation by the 26S
proteasome. The K11-linked chains are important during mitosis, when
they promote the metaphase-anaphase transition. By contrast, both K63-
and M1-linked ubiquitin chains act in a non-proteolytic manner and
regulate complex formation or kinase activation. In this way, M1-linked
ubiquitin chains drive activation of the NF-B transcription factor,
which leads to the synthesis of important cell cycle regulators. K63-
linked chains are assembled, for example, at sites of DNA damage, and
they are required for establishing a G2–M checkpoint that inhibits cell
division in the face of DNA damage.
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chain elongation through a mechanism of substrate-assisted
catalysis (Wickliffe et al., 2011). Together, UBE2C and UBE2S
assemble the majority of K11-linked chains during mitosis
(Matsumoto et al., 2010), thereby driving the degradation of most
APC/C substrates and steering progression of cells through division
(Garnett et al., 2009; Matsumoto et al., 2010; Williamson et al.,
2009).

Underscoring the importance of K11-linked chains for cell
division, several studies have shown that the expression and
stability of UBE2C and UBE2S are tightly regulated (Mathe 
et al., 2004; Rape and Kirschner, 2004; Whitfield et al., 2002;
Williamson et al., 2009). The aberrant accumulation of UBE2C
leads to premature APC/C activation in mitosis and inaccurate
sister chromatid separation (Miniowitz-Shemtov et al., 2010;
Reddy et al., 2007; Summers et al., 2008; van Ree et al., 2010).
Accordingly, increased levels of UBE2C and UBE2S are
frequently observed in cancer, and overexpression of either of
these E2s has been found to promote tumorigenesis in mice (Jung
et al., 2006; Tedesco et al., 2007; van Ree et al., 2010; Wagner
et al., 2004).

At the same time as studies identified K11-linked chains as
regulators of cell division, another type of ubiquitin linkage was
found to control proliferation indirectly: ubiquitin chains that are
connected through isopeptide bonds between the N-terminus of one
ubiquitin and the C-terminus of another result in activation of NF-
B, a transcription factor that has roles in promoting proliferation
and survival (Tokunaga et al., 2009). These linear (or M1-linked)
ubiquitin chains are assembled on NF-B essential modulator
(NEMO), a subunit of the IB-kinase (IKK), by the oligomeric E3
LUBAC (linear ubiquitin chain assembly complex) (Gerlach et al.,
2011; Ikeda et al., 2011; Tokunaga et al., 2011; Tokunaga et al.,
2009). Interestingly, the M1-linked ubiquitin chains are recognized
by specific domains, such as the ubiquitin-binding in ABIN and
NEMO (UBAN) domain of NEMO itself (Rahighi et al., 2009). The
interaction of M1-linked chains with NEMO results in the activation
of IKK, which ultimately triggers the phosphorylation-dependent
degradation of an NF-B inhibitor, activation of NF-B-dependent
transcription and cell division. Thus, NEMO is both a substrate and
effector of M1-linked chain formation, placing it at a central node
for signal transduction through this atypical ubiquitin chain type.
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Box 1. Structural highlights on the APC/C 

Although the SCF and APC/C are structurally similar, they differ in complexity. The SCF has only three core subunits (cullin 1, RBX1 and
SKP1) but cooperates with multiple different substrate adaptors, the F-box proteins (see figure panel A). The human genome encodes 68
different F-box proteins. By contrast, the human APC/C comprises 15 core subunits and only two substrate adaptors. Its core subunits can be
grouped into smaller subcomplexes that are charged with substrate binding or ubiquitin transfer (see figure panel B).

Owing to its complexity, the APC/C has long eluded structural analyses in reconstituted systems, which has left the field with diverse cryo-
electron microscopy structures of APC/C complexes isolated from many different sources. In a breakthrough study, the yeast APC/C was
recently reconstituted from recombinant subcomplexes and its structure was resolved by a combination of electron microscopy and X-ray
crystallography (see figure panel C) (da Fonseca et al., 2011; Schreiber et al., 2011). The catalytic core of the APC/C, its cullin-related
subunit APC2 and its RING protein APC11, localize to a platform domain, whereas the tetratricopeptide repeat (TPR) subunits involved in
substrate recruitment [APC6 (CDC16), APC8 (CDC23) and APC3 (CDC27)] are sequestered in the ʻarc lampʼ domain. The degrons of APC/C
substrates, referred to as D-boxes, are recognized by two APC/C components, the core subunit APC10 and the adaptor subunit CDC20 or
CDH1 (FZR1), which supports previous data that linked APC10 to substrate recognition (Carroll and Morgan, 2002; Passmore et al., 2003).
As the D-box coreceptor and the RING domain are in proximity to each other, the structural analysis of APC/C strengthened the notion that
initiation motifs (i.e. those recognized by UBE2C, which binds to the RING domain) are typically close to D-boxes [i.e. the regions that are
recognized by the substrate coreceptor (Williamson et al., 2011)]. Yeast and human APC/C differ in many aspects, with many subunits,
substrates and regulatory mechanisms that are unique to human APC/C. Thus, a structural elucidation of reconstituted human APC/C will be
a crucial step in elucidating the inner workings of this essential cell cycle regulator. 
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Together, the discoveries of M1- and K11-linked chains
expanded the repertoire of post-translational modifications that
have important roles in cell division control. These chain types act
in parallel to canonical K48-linked chains, which drive degradation
of SCF substrates, or K63-linked chains, which regulate the 
G2–M cell cycle checkpoint (Fig. 1). Cell division is, therefore,
controlled by a diverse set of ubiquitin chains with distinct
topologies.

Focus: specific targeting of active cell cycle
regulators
To ensure accurate division, the formation of the various ubiquitin
chain types needs to be tightly controlled. For example, the APC/C,
which is the E3 responsible for K11-linked chain formation, is
only activated by the cyclin-B1–CDK1 complex after cells have
entered mitosis. The formation of K11-linked ubiquitin chains then
triggers degradation of cyclin B1 and subsequent inhibition of
CDK1, an event that is essential for exit from mitosis (Glotzer et
al., 1991; Murray et al., 1989). This regulatory circuit ensures that
the APC/C only ubiquitylates active cyclin B1 and prevents
unscheduled APC/C activation from interfering with cyclin B1
accumulation and cell cycle progression. In variations on this
theme, ubiquitylation often achieves temporal and spatial regulation
of cell division by selectively targeting active cell cycle regulators,
as discussed below and in Fig. 2.

The cullin-RING E3 ubiquitin ligase 4 (CRL4) together with its
substrate recognition factor CDT2 (CRL4CDT2) controls the activity
of proteins that regulate DNA replication and repair (Abbas and
Dutta, 2011; Havens and Walter, 2011). Reminiscent of the APC/C
and the SCF, CRL4CDT2 contains a cullin scaffold, a RING subunit,
an adaptor and the substrate receptor CDT2. CRL4CDT2

ubiquitylates and marks for degradation the CDK inhibitor p21
(also known as CDKN1A or WAF) (Abbas et al., 2008), 
the transcription factor E2F1 (Shibutani et al., 2008), DNA
polymerase  (Kim and Michael, 2008), chromatin licensing and
DNA replication factor 1 (CDT1) (Zhong et al., 2003), and the
SET-domain-containing methyltransferase 8 (SETD8) (Abbas 
et al., 2010; Arias and Walter, 2006; Centore et al., 2010; Jorgensen
et al., 2011; Oda et al., 2010; Senga et al., 2006; Tardat et al.,
2010). By targeting these proteins, CRL4CDT2 contributes to limiting
DNA replication to once per cell cycle (Abbas and Dutta, 2011;
Havens and Walter, 2011).

Most of the CRL4CDT2 substrates are targeted to their location
on chromatin, and hence are activated, by the DNA polymerase
processivity factor proliferating cell nuclear antigen (PCNA).
Importantly, this high-affinity interaction with PCNA is now known
to be a prerequisite for CRL4CDT2-driven ubiquitylation and
proteolysis (Fig. 2) (Arias and Walter, 2006; Senga et al., 2006).
All CRL4CDT2 substrates mentioned above contain a conserved
sequence, the PIP box degron, which mediates binding of the
substrates to PCNA and at the same time contributes to their
recognition by CDT2 (Havens and Walter, 2009). By coupling
ubiquitylation to PCNA binding, CRL4CDT2 ensures that only the
chromatin-bound and active substrate pool is targeted for
degradation (Arias and Walter, 2006; Havens and Walter, 2009).
Employing a localized co-factor for ubiquitylation, therefore,
provides a mechanism by which cells achieve selective degradation
of active cell cycle regulators.

An alternative mechanism by which ubiquitylation occurs on
active cell cycle regulators is illustrated by a proteolytic circuit that
controls centrosome duplication. During mitosis, cells contain two

centrosomes that act as microtubule-nucleating centers at spindle
poles. Following cell division, the single centrosome in each
daughter needs to be duplicated once, but only once, in a process
that is initiated by the Polo-like kinase 4 (PLK4) (Kleylein-Sohn
et al., 2007). Cancer cells often have compromised mechanisms
that restrict centrosome duplication, which leads to multipolar
spindles and chromosome missegregation (Ganem et al., 2009). To
prevent centrosome overduplication, the activities of PLK4 (Cunha-
Ferreira et al., 2009; Guderian et al., 2010; Holland et al., 2010;
Rogers et al., 2009), its effector spindle assembly 6 homolog
(SAS6) (Puklowski et al., 2011; Strnad et al., 2007) or the centriolar
coiled coil protein of 110kDa (CP110) (D’Angiolella et al., 2010)
are controlled by ubiquitin-dependent degradation.

Among the mechanisms protecting cells against supernumerous
centrosomes, regulation of PLK4 is particularly important, as high
levels of this kinase are sufficient to drive centrosome
overduplication (Kleylein-Sohn et al., 2007). However, the
activation of PLK4 not only induces the phosphorylation of
centrosomal proteins, but it also leads to robust autophosphorylation
(Guderian et al., 2010; Holland et al., 2010). The
autophosphorylation of PLK4 then generates a degron that can be
recognized by the E3 SCF in conjunction with its recognition
factor -transducin-repeat-containing (SCFTrCP) (TrCP is also
known as FBW1A), which subsequently targets PLK4 for
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degradation (Fig. 2) (Cunha-Ferreira et al., 2009; Rogers et al.,
2009). Degradation coupled to autophosphorylation thus ensures
that only the active kinase is subject to ubiquitin-dependent
degradation.

During mitosis, microtubules not only originate from
centrosomes but also from chromosomes in a process that depends
on the GTPase Ran (Kalab and Heald, 2008). When charged with
GTP, Ran activates a set of spindle assembly factors (SAFs),
allowing them to nucleate and stabilize microtubules. Several of
these SAFs are later targeted for degradation through APC/C-
dependent ubiquitylation (Fig. 2) (Song and Rape, 2010; Stewart
and Fang, 2005a). Both the activity and stability of SAFs are
controlled by inhibitors, the importins, which bind to sequence
motifs required for microtubule binding and APC/C recognition.
By dissociating importins, Ran activates these SAFs, yet at the
same time, it enables their recognition by the APC/C (Song and
Rape, 2010). Coupling activation and degradation, therefore,
provides another mechanism to remove active cell cycle regulators.
Together, these mechanisms underscore the idea that regulated
ubiquitylation is an effective mechanism for implementing precise
temporal and spatial control in cell division.

Independence: autocatalytic mechanisms of
cell cycle control
In the above sections, we focused on the regulation that the
ubiquitylation machinery can impose on substrates. However, as
E3s drive crucial processes such as CDK inactivation or spindle
formation, the activities of the enzymes themselves also have to be
tightly regulated. Although this can be achieved by several
mechanisms, E3s with roles in cell cycle control often employ
autocatalytic means of activation and inhibition, and the APC/C
provides a prime example of this.

During the early stages of mitosis, the activity of the APC/C
is kept in check by an inhibitory network referred to as the
spindle assembly checkpoint (SAC). Components of the SAC
interfere with substrate recognition by the APC/C and thereby
delay sister chromatid separation until all chromosomes have
achieved bipolar attachment to the spindle (Musacchio and
Salmon, 2007). Once chromosome attachment has been
completed, the APC/C is rapidly activated, which requires the
dissociation of inhibitory complexes between CDC20, the
substrate-targeting subunit of the APC/C, and the SAC
components MAD2 (also known as MAD2L1) and BubR1 (also
known as BUB1B). Intriguingly, the dissociation of checkpoint
complexes is brought about by the APC/C itself, which together
with p31comet (also known as MAD2L1 and MAD2L1BP),
UBE2C and UBE2S, catalyzes the ubiquitylation and degradation
of CDC20 and potentially other proteins (Miniowitz-Shemtov et
al., 2010; Reddy et al., 2007; Summers et al., 2008; Teichner et
al., 2011; Williamson et al., 2009; Xia et al., 2004; Zeng et al.,
2010). This APC/C-dependent ubiquitylation is likely to promote
the exchange of checkpoint-inhibited CDC20 with newly
synthesized, uninhibited CDC20, thereby leading to further
APC/C activation. Shortly thereafter, the APC/C ensures the
permanent nature of checkpoint-inactivation by initiating the
degradation of the checkpoint components cyclin B1, monopolar
spindle 1 (MPS1, also known as TKK), BUB1 and Aurora B
(Palframan et al., 2006; Qi and Yu, 2007; Stewart and Fang,
2005b). Thus, the APC/C itself initiates events that lead to spindle
checkpoint inactivation and full APC/C activation, a layout that
has the potential for positive-feedback regulation.

Once the APC/C has been turned on, the sequential degradation
of its many substrates ensures the ordered progression of cells
through mitosis. After the APC/C has completed this task, its
attention is focused on itself and it initiates its own inactivation.
The APC/C accomplishes this feat by catalyzing the ubiquitylation
of its substrate adaptors, CDC20 and CDH1 (Cdc20 homolog 1,
also known as FZR1), as well as that of its E2s, UBE2C and
UBE2S (Listovsky et al., 2004; Mathe et al., 2004; Nilsson et al.,
2008; Pfleger and Kirschner, 2000; Rape and Kirschner, 2004;
Williamson et al., 2009). Substrates can competitively inhibit these
degradation reactions, thereby ensuring that the APC/C is not
prematurely inactivated (Rape and Kirschner, 2004; Williamson 
et al., 2011). The decrease in APC/C activity also stabilizes the
deubiquitylating enzyme USP37 (for ubiquitin specific 
peptidase 37) (Huang et al., 2011). USP37 binds to the APC/C,
protecting its substrate cyclin A from ubiquitylation, and thereby
allows cyclin A to team up with the CDK2 kinase to completely
shut off APC/C activity. These intrinsic mechanisms of APC/C
inactivation are overlaid by control reactions that are coupled to
the environment of the cell, such as the growth-factor-dependent
synthesis of the APC/C inhibitor EMI1 (also known as FBXO5
and FBX5) (Hsu et al., 2002). Thus, inactivation of the APC/C is
brought about by a complex series of events that, to a large extent,
depends on autocatalytic mechanisms.

Similar to the APC/C, the SCF is subject to autocatalytic
regulation. The SCF is activated by conjugation of the ubiquitin-
like protein NEDD8 to a conserved lysine residue in cullin 1
(CUL1) (see figure in Box 1). The neddylation of CUL1 increases
the flexibility of the RING-subunit ring-box 1 (RBX1) and prevents
binding of the SCF inhibitor CAND1 (for cullin-associated and
neddylation-dissociated 1) (Duda et al., 2008; Liakopoulos et al.,
1998; Liu et al., 2002; Saha and Deshaies, 2008). Together with a
cofactor, RBX1 itself catalyzes the transfer of NEDD8 to CUL1,
thereby turning on its own SCF (Scott et al., 2010). Extending the
similarities to the APC/C, the SCF also promotes the turnover of
its own substrate-targeting factors, the F-box proteins (Bennett et
al., 2010; Lee et al., 2011). Thus, through various mechanisms, the
APC/C and SCF control their own activity. By providing feedback
control, such autocatalytic regulatory circuits are likely to be of
central importance for accurate cell cycle progression.

Team work: coordinated action of
ubiquitylation enzymes
With the advent of global analysis tools, crosstalk between
ubiquitylation enzymes has been recognized to provide another
layer of ubiquitin-dependent cell cycle control. For the SCF and
the APC/C, different mechanisms of such coordination have been
reported: the two E3s can regulate each other’s activity, as
demonstrated by the degradation of F-box proteins by the APC/C
(Bashir et al., 2004; Puklowski et al., 2011; Wei et al., 2004), they
can target the same substrates (Young and Pagano, 2010), and their
activities in the cell can be coordinated to regulate the same
process, as shown for the response of cells to the anti-tubulin
chemotherapeutic taxol (Inuzuka et al., 2011; Wertz et al., 2011).

Crosstalk between cell-cycle-dependent ubiquitylation enzymes
is facilitated by their sequestration in overlapping protein
complexes, a feature that is prominently displayed by E3s and
opposing deubiquitylating enzymes (DUBs) (Sowa et al., 2009).
Such E3–DUB pairs can achieve transient substrate modification,
as observed, for example, for the reversible ubiquitylation of
spliceosomal proteins through the E3 PRP19 [officially known as
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pre-mRNA processing factor 19 homolog (PRPF19)] and the DUB
USP4 (Song et al., 2010). Alternatively, DUBs and E3s can regulate
each other: the SCF-associated DUB USP15, for example, controls
the stability of RBX1, the RING subunit of the SCF (Hetfeld et al.,
2005), and USP44 protects the APC/C activator CDC20 from
ubiquitylation (Stegmeier et al., 2007; Zhang, 2011). This interplay
between DUBs and E3s works in both ways: the APC/C targets the
DUB USP37 for degradation during mitosis, yet in late G1 phase,
a stabilized USP37 helps to shut off the APC/C (Huang et al.,
2011). Thus, by reverting ubiquitylation, DUBs can terminate
ubiquitin-dependent signaling, set a threshold for the E3-activity
required for measurable substrate modification or protect the E3
from degradation.

As mentioned above, the APC/C and SCF can target the same
proteins, but do so mostly at different cell cycle stages. However,
during mitosis, the APC/C cooperates with other E3s, such as the
essential cullin RING E3 ligase CRL3. Together with specific
substrate adaptors, CRL3 ubiquitylates the kinase Aurora B, which
is an essential regulator of kinetochore function, spindle checkpoint
activity and cytokinesis (Maerki et al., 2009; Sumara et al., 2007).
The CRL3-dependent ubiquitylation of Aurora B removes the
kinase from prometaphase chromosomes and helps to target it to
the spindle midzone in anaphase, a re-localization characteristic
for so-called passenger proteins. Ubiquitylated Aurora B was
proposed to interact with the ubiquitin-dependent segregase p97
(also known as VCP) (Ramadan et al., 2007), which might provide
energy in form of ATP hydrolysis to separate Aurora B from its
binding partners at chromosomes. At later stages in mitosis, Aurora
B is targeted for degradation by the APC/C (Stewart and Fang,
2005b). Although it remains to be tested, it is an interesting
hypothesis that the same Aurora B molecule is dissociated from
chromatin by CRL3 and then sent for degradation by the APC/C.

Taxol is a chemotherapeutic agent that interferes with cancer
cell proliferation by activating the spindle checkpoint, which in
turn inhibits the APC/C and leads to mitotic arrest. Upon prolonged
exposure to taxol, cells commit to apoptosis and die or, in a
scenario that is less advantageous for the organism, they slowly
reduce CDK1 activity and ‘slip’ out of mitosis (Fig. 3). The decision
between death and slippage is determined by the stability of the
caspase inhibitor myeloid cell leukemia sequence 1 (MCL1). In
cells that sustain taxol-induced APC/C inhibition, MCL1 is
eventually phosphorylated by several kinases and targeted for
ubiquitylation by the SCFFBW7 complex (Inuzuka et al., 2011;
Wertz et al., 2011). The ensuing degradation of MCL1 triggers
apoptosis. Cancer cells can subvert this mechanism and obtain
resistance to taxol by stabilizing MCL1 through mutations in
FBW7, overexpression of the deubiquitylating enzyme USP9X, or

premature APC/C activation as the result of a defective spindle
checkpoint (Petroski and Deshaies, 2005a; Schwickart et al., 2010;
van Ree et al., 2010; Wagner et al., 2004). Thus, APC/C inhibition
and SCF activation have to act in concert to guarantee the
appropriate response to permanent spindle damage, as caused by
anti-tubulin chemotherapeutics. Thus, not only collaboration, but
also coordination between multiple ubiquitylation enzymes is
important for proper cell division control.

Perspectives
Among the many recent findings that have improved the
understanding of ubiquitin-dependent cell cycle control, we have
focused our discussion on new regulatory motifs that we believe
will have general importance for accurate cell division. The
discoveries described here raise many new issues that will need to
be addressed in the future.

Despite being at the center of intense study for several years,
aspects of APC/C and SCF regulation still remain relatively poorly
understood. Why, for example, does the APC/C of higher
eukaryotes synthesize K11-linked ubiquitin chains instead of the
more canonical K48-linked chains? Is there a specific receptor that
recognizes K11-linked, but not K48-linked, ubiquitin chains? What
allows the APC/C to turn against its own inhibitor and catalyze
spindle checkpoint inactivation, and could this mechanism provide
the basis for positive feedback and switch-like APC/C-activation?
So far, the APC/C is the only known E3 that assembles
homogeneous K11-linked chains. As the APC/C and K11-linked
chains are essential for cell division, a better understanding of the
function and regulation of these atypical chains might provide
specific approaches to interfering with the proliferation of rapidly
dividing cells, such as those observed in tumors.

As demonstrated by the many examples of crosstalk between
E3s and DUBs, future studies of ubiquitin-dependent cell cycle
control should also go beyond a single enzyme and include a
system-wide analysis of the ubiquitylation networks that are linked
to cell cycle control. This will require a combination of modern
proteomic approaches (Bennett et al., 2010; Kaiser et al., 2011),
genetic analyses through high-throughput small interfering RNA
screens (Neumann et al., 2010; Song et al., 2010) and biochemical
dissection of enzyme activities (Wickliffe et al., 2011). We expect
such studies to provide mechanistic insight into the complexities
and redundancies of cell cycle control, but also to reveal how these
mechanisms could be exploited to target aberrant cell division in
disease.

Indeed, an emphasis should be placed on the development of
small molecules that interfere with the activity of ubiquitylation
enzymes that are essential for cell division or are misregulated in
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Fig. 3. Coordination of APC/C and SCF activities in
cells experiencing spindle damage. Spindle damage,
as induced by anti-tubulin chemotherapeutics such as
taxol, activates the spindle assembly checkpoint
(SAC), which in turn inhibits the APC/C. If cells can
sustain APC/C inhibition, the caspase inhibitor MCL1
is phosphorylated and targeted for ubiquitylation by
SCFFBW7. Degradation of MCL1 leads to cell death.
Cancer cells can bypass this protective mechanism by
impeding SAC function, mutating FBW7, or
overexpressing the DUB USP9X. These cells can
eventually downregulate CDK1 activity and slip out of
mitosis without undergoing apoptosis.
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disease. Recent studies have identified molecules that target
enzymes of all stages of the ubiquitylation cascade, including the
E1 involved in the conjugation of NEDD8, the E2 UBE2R1, the
E3s SCFCDC4 and APC/C, the DUB USP7, and the proteasome
(Ceccarelli et al., 2011; Orlicky et al., 2010; Soucy et al., 2009;
Wu, W. K. et al., 2010; Zeng et al., 2010). These molecules have
provided insight into ubiquitin-dependent cell cycle control: for
example, MLN4942, an inhibitor of the NEDD8 E1, or the
UBE2R1 inhibitor CC0651 have underscored the importance of
SCF for cell division and survival (Ceccarelli et al., 2011; Soucy
et al., 2009). In addition, use of the the APC/C inhibitor TAME has
confirmed that the APC/C triggers spindle checkpoint inactivation
(Zeng et al., 2010), a concept that had previously been contested
(Nilsson et al., 2008). Importantly, the fact that the proteasome
inhibitor Velcade has been successful in treating multiple myeloma
predicts that compounds against essential ubiquitylation enzymes
will be useful tools in our armory against hyperproliferative
diseases. We are optimistic that our increasing knowledge about
ubiquitin-dependent mechanisms of cell cycle control will be
translated into effective therapeutic strategies against cancer cells
– namely cells that do not live up to the task of achieving accurate
cell division – in the future.
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