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Recent work revealed that cullin-RING ligases and the

anaphase-promoting complex, two classes of ubiquitin ligases

that are essential for cell division in all eukaryotes, are regulated

in a highly dynamic manner. Here, we describe mechanisms

that establish the dynamic regulation of these crucial

ubiquitylation enzymes and discuss the functional

consequences for cell division control.
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Introduction
Mitotic cells undergo dramatic changes in their compo-

sition and shape: organelles are dismantled upon entering

the division stage and re-assembled upon completion of

mitosis; chromosomes are packaged into units that facili-

tate their distribution into the emerging daughter cells;

and interphase microtubules are taken apart and replaced

by the mitotic spindle, a dynamic apparatus that exhibits

continuous microtubule assembly at one end, and disas-

sembly at the other. As exemplified by the chemother-

apeutic paclitaxel, a molecule that disrupts microtubule

turnover and triggers cell cycle arrest and death, inter-

fering with the dynamics of mitotic processes can have

disastrous consequences.

To ensure that the fundamental changes occurring during

mitosis result in two identical daughter cells, cell division

needs to be tightly regulated, and posttranslational modi-

fication of cell cycle regulators with ubiquitin plays an

essential role in fulfilling this task. At all times during cell

division, enzymes referred to as E3 ubiquitin ligases

recruit specific substrates to promote attachment of single

ubiquitin molecules or polymeric ubiquitin chains, reac-

tions that can be completed within seconds [1–3].

Depending on the topology of this modification, these

events alter the target’s stability, localization, or activity

[3]. Ubiquitin-dependent signaling can later be
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terminated by deubiquitylating enzymes, which rapidly

disassemble ubiquitin marks [4]. Its rapid kinetics and

reversibility predestine ubiquitylation as a modification

that is well suited to control dynamic processes, such as

cell division.

The best understood E3s with roles in cell division

control are the cullin-RING-ligases (CRLs) and their

relative, the anaphase-promoting complex (APC/C).

These E3s are built around a cullin or cullin-like scaffold,

which engages distinct substrate receptors and a catalytic

RING-domain subunit [5–9]. CRLs and APC/C ubiqui-

tylate key cell cycle regulators, such as modulators of

cyclin-dependent kinase activity (e.g. the cyclins A, B,

and E; Cdk-inhibitory kinase Wee1; Cdc25 phosphatase),

components of cell cycle checkpoints (e.g. Cdk-inhibitors

p21 and p27; XPC; histones), mitotic kinases (e.g. Plk1,

Aurora A, Aurora B) or members of signaling pathways

that coordinate cell division with conditions in the

environment (e.g. the transcription factors c-myc or c-

jun; components of the mTORC kinase complex) [10–
16].

Befitting their central role in cell cycle control, ubiqui-

tylation reactions catalyzed by CRLs and the APC/C have

to occur at the right time and place, which relies on an

intricate interplay between these E3s and their sub-

strates. Many CRL-substrates require prior modifications,

such as phosphorylation, glycosylation or hydroxylation,

for their delivery to the E3 [5], whereas binding partners

promote or inhibit substrate recognition by the APC/C

[17–19]. In addition, the E3s themselves are subject to

tight control, and suited for their function in orchestrating

cell division, this occurs in a highly dynamic fashion:

CRLs can rapidly exchange substrate receptors in

response to altered biological need, and the mitotic

APC/C cycles between an inhibited and partially active

state, thus priming cells for rapid initiation of sister

chromatid separation. In this perspective, we will focus

on the mechanisms that establish dynamic CRL-regula-

tion or APC/C-regulation and discuss the functional con-

sequences for cell division.

Dynamic control of substrate-targeting to
cullin-RING ligases
CRLs recruit substrates through a large number of dedi-

cated receptors: for example, human CRL1 relies on 69

human F-box proteins, CRL3 depends on �100 BTB

proteins, and CRL4 exploits �60 WD40-containing

DCAFs [20��,21]. As observed for recombinant CRL1,

substrate receptors can bind the cullin scaffold very

tightly, with in an in vitro half-life of the complex of
www.sciencedirect.com
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about one week [22��], and most cullins are saturated by

substrate receptors in cells [20��]. To control dynamic

processes such as cell division, CRLs must therefore be

capable of rapidly exchanging substrate receptors

depending on biological need, and recent studies point

to the Cand1 protein as a mediator of this activity

[22��,23�,24�].

Genetic evidence had indicated that Cand1 is required

for CRL-function [25–27], yet when analyzed biochemi-

cally, it was found to wrap around the cullin and block the

recruitment of substrate receptors [28,29]. Thus, while

one approach pointed to Cand1 as a CRL-activator,

another suggested that it inhibits the same enzymes. This

conundrum was resolved by the discovery that Cand1

destabilizes CRL-receptor complexes by a million-fold

[22��], thereby allowing the CRL backbone to team up

with a distinct receptor to target another group of sub-

strates (Figure 1a). Indeed, in the absence of Cand1,

CRLs fail to exchange receptors, and they are impaired

in their capacity to ubiquitylate substrates that need to be

turned over in response to altered cellular conditions

[22��,23�,24�].

The ability of Cand1 to exchange substrate receptors

needs to be coordinated with ongoing ubiquitylation

reactions and the abundance of remaining substrates

for a given CRL. This function is in part fulfilled by

the reversible modification of cullins with the ubiquitin-

like protein Nedd8. Similar to ubiquitylation, neddyla-

tion requires an E3 that is comprised of the CRL’s RING-

subunit and an accessory factor, DCN1 [30��]. Nedd8 can

be rapidly removed from cullins by the JAMM-domain

containing CSN5, a component of the eight-subunit

COP9-signalosome (CSN) [31��,32,33]. Neddylation

induces conformational changes in the cullin that increase

the catalytic activity of the CRL, but it also impedes

turnover of CRL-receptor complexes by Cand1 [34,35].

As the CSN does not efficiently recognize CRLs that are

bound to substrates and engaged in catalyzing their

ubiquitylation [36,37��], CRLs are protected from dened-

dylation and Cand1 is blocked from exchanging receptors

until the reaction cycle has been completed (Figure 1b).

Even if a substrate has been ubiquitylated and degraded,

it could be problematic to immediately dismantle the

CRL-receptor complex, especially if more substrates of

this CRL await their ubiquitylation. In such cases, the

CSN can regulate CRLs by means that require its binding

to the E3, yet do not depend on its activity to remove

Nedd8. Indeed, �30% of all CRLs are engaged with CSN

in human cells [20��]. When bound to CRLs, the CSN

blocks both the substrate-binding site on the receptor as

well as the catalytic RING-domain, thereby inhibiting

the activity of CRLs and impairing the exchange of

substrate receptors by Cand1 (Figure 1c) [36,37��,38��].
If substrates of this CRL are still abundant, they can
www.sciencedirect.com 
displace the CSN, thereby activating the CRL to promote

their own ubiquitylation (Figure 1d) [38��]. The CSN,

therefore, helps to preserve a reservoir of primed CRL-

complexes, allowing these enzymes to complete their

task in turning over important substrates.

Collectively, the recent findings revealed that CRLs are

dynamic assemblies that can rapidly adjust their activity

to the availability of substrates (summarized in Figure 1):

when bound to a given receptor, neddylated CRLs ubi-

quitylate specific substrates, a reaction that can promote

the degradation of cell cycle regulators or change the

activity of signaling pathways that are critical for cell

division. Upon processing of the modified protein, the

CSN inhibits the CRLs by removing Nedd8 or blocking

catalytic domains. Remaining substrates of this CRL can

release the CSN, thereby activating the CRL to trigger

their own ubiquitylation. Conversely, if substrates of

other CRLs need to be turned over, Cand1 can destabi-

lize existing CRL-receptor complexes. This activity of

Cand1 allows new CRL-receptor pairs to assemble that

can then enter another ubiquitylation cycle.

Dynamic control of APC/C-activity by the
spindle assembly checkpoint
A variation on the theme of dynamic E3-control is seen at

the metaphase-anaphase transition, a key event in the cell

cycle that depends on the APC/C. Because the APC/C

promotes sister chromatid separation, its full activation

needs to be delayed until all chromosomes have achieved

bipolar attachment to the spindle, or otherwise, daughter

cells would not be guaranteed to obtain an identical

chromosome set. The task of inhibiting the APC/C during

early mitosis is delegated to an intricate signaling network

referred to as the spindle assembly checkpoint [39,40].

Once chromosome alignment has been completed, cells

rapidly shut down this mitotic checkpoint, activate the

APC/C, and initiate sister chromatid separation.

When the spindle checkpoint is active, a Mitotic Check-

point Complex (MCC) composed of BubR1, Mad2, Bub3,

and Cdc20, binds to the APC/C (Figure 2a) [39,41��,42��].
Within this APC/CMCC, the position of Cdc20 is distinct

from its location in APC/CCdc20, the form of the APC/C

that drives sister chromatid separation: Cdc20 is displaced

from APC10, which disrupts recognition of D-box

degrons at the interface between Cdc20 and APC10

[41��,42��,43]. In addition, BubR1 inserts a KEN-box

into the central cavity of Cdc20, thereby blocking the

binding of Cdc20 to KEN-box degrons in substrates

[41��,44]. Through these means, the spindle checkpoint

impairs the ability of the APC/C to recruit substrates, such

as cyclin B1 or securin, whose stabilization prevents sister

chromatid separation.

Intriguingly, even though APC/CMCC is unable to

ubiquitylate its key substrates, it subjects the
Current Opinion in Cell Biology 2013, 25:704–710
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Figure 1
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Dynamic assembly of CRL-substrate receptor complexes. As shown with CRL1 as an example, CRLs form dynamic complexes with many substrate

receptors (SR). Substrate receptors are recruited to Cul1 by the Skp1 adaptor protein. When modified with Nedd8 (N8), Cul1-SR complexes recruit

specific substrates and catalyze their ubiquitylation. After processing of the ubiquitylated substrate, the CRL-SR is deneddylated by the large CSN

complex (b), reducing its catalytic activity. Subsequently, the CRL-SR can (a) be subjected to Cand1-dependent exchange of substrate receptors,

allowing other substrates to be ubiquitylated; (c) CSN can remain bound to stabilize an inactive CRL-SR complex; (d) substrates can displace CSN to

promote their own ubiquitylation; or (e) the SR can be targeted for CRL-dependent ubiquitylation and proteasomal degradation. CRLs are therefore

dynamic assemblies that adapt their composition to biological need.
Cdc20-molecule within MCC to ubiquitylation and

degradation, a reaction that leads to the disassembly

of spindle checkpoint complexes (Figure 2b) [45��,46�,
47��,48,49��,50��,51��,52,53]. As a result of this reaction,

the overexpression of APC/C-E2s leads to spindle check-

point bypass and division errors in cultured cells or mice

[45��,54–56], while inhibiting the APC/C stabilizes the

checkpoint [47��,51��,57]. Thus, there is a balance of

powers: while the spindle checkpoint inhibits the APC/

C, the APC/C can strike back and turn off the checkpoint.

The significance of this dynamic relationship was initially

challenged, as expression of a Cdc20-variant that lacked

all Lys residues did not arrest cells with a permanently

active checkpoint [58]. However, mutating all lysines in

Cdc20 impaired binding to Mad2 [47��], inappropriately

increased the affinity of Cdc20 to APC/C [57], and in

yeast, interfered with its capacity to support substrate

ubiquitylation [49��], suggesting that this mutant fails to

recapitulate the dynamic behavior of the wild-type

protein.

How the APC/C can target Cdc20 without ubiquitylating

most of its substrates is incompletely understood, but

current evidence suggests that this process is taking place

continuously during active checkpoint signaling. The
Current Opinion in Cell Biology 2013, 25:704–710 
ubiquitylation of Cdc20 and disassembly of checkpoint

complexes are strongly promoted by p31comet, a protein

that adopts a Mad2-like conformation and interacts with

both spindle checkpoint complexes at kinetochores and

on the APC/C (Figure 2b) [45��,46�,48,52,59,60].

Depletion of p31comet prevents the dissociation of check-

point components from APC/C even in the presence of

spindle damage, suggesting that APC/CMCC-complexes

are constantly turned over during early mitosis [47��].
Similar observations have been made upon depletion of

an APC/C-subunit, APC15, which is critical for Cdc20-

autoubiquitylation, but does not play essential roles in

targeting mitotic substrates [49��,50��,61]: loss of APC15

protects checkpoint complexes from disassembly, even if

chromosome alignment had not been completed. APC15

is located close to the binding site of checkpoint com-

plexes on APC/C, where it might help expose critical Lys

residues in Cdc20 or directly affect the catalytic activity of

the APC/C [50��]. Thus, rather than stably binding the

APC/C and locking it in an inactive state, spindle check-

point complexes are constantly turned over on this E3.

The APC/C requires the target of the checkpoint-de-

pendent ubiquitylation event, Cdc20, not only for sub-

strate delivery, but also for achieving its full catalytic
www.sciencedirect.com
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Figure 2

Bub3

B
ub

3

Mad2

Mad2

Bub
R1

Cdc20

Cdc20

B
ub

R
 1

Ube2S

Ube2C
APC/C

p31comet

APC/C

Ube2S Cdc20Cdc20

APC/C
Ube2C

su
bs

tra
te

Mad2
Cdc20

Bub
R 1

Bub
3

APC/CMCC

MCC APC/CCdc20

(a) (c) (d)

(b)

Current Opinion in Cell Biology

Dynamic regulation of the APC/C by the spindle assembly checkpoint. During spindle checkpoint signaling, the mitotic checkpoint complex (MCC)

composed of BubR1, Mad2, Bub3, and Cdc20 binds the APC/C to form APC/CMCC (a). APC/CMCC does not interact with most APC/C-substrates, but

targets Cdc20 for autoubiquitylation and degradation (b). This reaction is constantly promoted by p31comet. The turnover of Cdc20 disassembles MCC

and releases free APC/C. Mitotic cells synthesize new Cdc20 protein that can (c) team up with checkpoint effectors to generate new MCC, if the

checkpoint is still turned on, or (d) associate with APC/C to form active APC/CCdc20, which can bind and ubiquitylate mitotic substrates, thereby

triggering mitotic exit.
activity [62]. Thus, while the ubiquitylation and degra-

dation of Cdc20 helps disassemble checkpoint-com-

plexes, it would ultimately also shut down the APC/C.

To counteract this unwanted inactivation, mitotic cells

actively translate Cdc20 mRNA to produce new Cdc20

protein [51��,58,63]. If chromosome attachment has not

been completed and the checkpoint is still turned on,

newly synthesized Cdc20 engages Mad2, BubR1, and

Bub3 to form new MCC (Figure 2c), a reaction that is

required to maintain stable spindle checkpoint signaling

[51��,58]. Conversely, if chromosome alignment has been

completed, formation of new MCC-complexes will be

blocked by several means [40], and the newly produced

Cdc20 can rapidly generate active APC/CCdc20 to drive

sister chromatid separation (Figure 2d). Regulation of the

APC/C by the spindle checkpoint is, therefore, a dynamic

process that requires continuous production and disas-

sembly of APC/CMCC.

Functional consequences of dynamic E3
regulation for cell cycle control
Why are the E3s that are most critical for cell cycle control

regulated in such a dynamic manner? As seen in other

systems [64], the dynamic regulation of an enzymatic

activity allows cells to rapidly respond to altered con-

ditions in their environment, a prerequisite for successful
www.sciencedirect.com 
cell division: cells need to integrate the fluctuating avail-

ability of nutrients into their division program, arrest the

cell cycle in response to damage, or adapt to the dramatic

structural changes during mitosis. Indeed, dynamic regu-

lation of CRLs and the APC/C allows cells to quickly

respond to altered cell cycle states: re-sculpting of CRL-

adaptor complexes by Cand1 is essential when yeast cells

restructure transcriptional programs in response to

changes in their nutrient source [24�], or when plant cells

are exposed to auxin, a hormone that controls cell division

and morphology [26]. Similarly, the APC/C has to be

dramatically activated within minutes of completing

chromosome attachment to the spindle, and the continu-

ous disassembly of checkpoint-complexes likely helps to

drive the rapid exchange from APC/CMCC to fully active

APC/CCdc20 [65].

Although speculative, the dynamic regulation of mitotic

APC/C might also affect the timing of substrate degra-

dation. Whereas most APC/C-substrates are stabilized by

the spindle checkpoint, some proteins, such as cyclin A or

Nek2A, are degraded despite incomplete chromosome

attachment and ongoing spindle checkpoint signaling.

These checkpoint-independent APC/C-substrates not

only require classical degrons, but also additional motifs

or binding partners that provide further interaction
Current Opinion in Cell Biology 2013, 25:704–710
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surfaces with the APC/C [19,66]. It is possible that their

increased affinity to the APC/C allows these substrates to

kinetically compete with checkpoint effectors in binding

newly synthesized Cdc20, thereby establishing their own

degradation. It is interesting to note that an interphase

inhibitor of the APC/C, Emi1, blocks APC/C’s ability to

bind substrates as well as its activity to assemble ubiquitin

chains, and hence, does not allow APC/C-dependent

turnover of inhibitor complexes [67�,68�]. These findings

suggest that dynamic regulation of the APC/C is particu-

larly important during mitosis, the time when certain

substrates are turned over despite an urgent cellular need

to keep the APC/C in check.

Dynamic control of an enzymatic machinery provides

unique opportunities for small molecule interference,

and this turned out to be no different for the CRLs and

APC/C. Consistent with the CRL-cycle being regulated

by reversible modification of cullins with Nedd8, acute

inhibition of the Nedd8-E1 by the small molecule

MLN4924 leads to the rapid loss of all modified cullins

and brings the CRL-cycle and cell division to a halt

[20��,69]. Similarly, dynamic regulation of the APC/C

has been successfully targeted by the small molecule

TAME, which mimics a C-terminal motif in Cdc20 that

mediates its interactions with checkpoint-inhibited

APC/C [51��,57]. TAME interferes with the ubiquity-

lation of Cdc20 by APC/CMCC, thereby stabilizing

spindle checkpoint complexes and triggering a persist-

ent mitotic arrest. Prolonged interference with APC/C-

activity ultimately leads to cohesion fatigue, a process

during which the continuous strain on chromosomes

attached to opposite spindle poles disrupts the mech-

anical link between sister chromatids [70,71], and it can

result in cell death. As independent work had pointed

to Cdc20-inhibition being a powerful strategy to inhibit

cancer cell division [72], interfering with the dynamic

interplay between the APC/C and the spindle check-

point might indeed open up new avenues towards

successful chemotherapy.

Outlook
While it is now clear that CRLs and APC/C are

regulated in a highly dynamic manner, the progress

in this field has raised many new questions. For

example, not all CRL-substrate receptors appear to

be responsive to Cand1, yet how Cand1 discriminates

between different receptors is not fully understood

[22��]. It is possible that Cand1-independent receptors

are turned over by autoubiquitylation once they run out

of substrates (Figure 1e) [73,74], a reaction that has also

been documented for APC/C-specific E2 enzymes

[46�,75]. The regulatory advantages of receptor turn-

over as opposed to Cand1-mediated exchange have not

been fully explained. In addition, the neddylation

efficiency of the seven human cullins appears to be

significantly different from each other [20��], with one
Current Opinion in Cell Biology 2013, 25:704–710 
cullin being modified by a unique Nedd8-E2 [76] and

some CRLs being neddylated at particular locations

[77], yet how these properties of the neddylation path-

way affect the CRL-cycle has not been systematically

addressed. In a similar manner, crucial aspects of APC/

C-dependent spindle checkpoint disassembly, such as

the mechanism of p31comet, how ubiquitylated Cdc20 is

extracted from APC/CMCC, or the particular role of

Apc15, require further attention. It is likely that the

mechanisms underlying the dynamic regulation of

CRLs and APC/C will become clearer as researchers

continue to develop methods for quantitative dissection

of the rapid reactions that drive the cell cycle, similar to

those that revealed the role of Cand1 as a substrate

receptor exchange factor [22��]. Although it seems

intuitive that a dynamic process, such as cell division,

calls for highly dynamic regulators, such as the CRLs

and APC/C, understanding their behavior and its con-

sequences for cell cycle control will surely keep many

scientists moving in the future.
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