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Rapid genome shrinkage
in a self-fertile nematode reveals
sperm competition proteins
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To reveal impacts of sexual mode on genome content, we compared chromosome-scale
assemblies of the outcrossing nematodeCaenorhabditis nigoni to its self-fertile sibling species,
C. briggsae. C. nigoni’s genome resembles that of outcrossing relatives but encodes 31%more
protein-coding genes than C. briggsae. C. nigoni genes lacking C. briggsae orthologs were
disproportionately small and male-biased in expression.These include themale secreted short
(mss) gene family, which encodes sperm surface glycoproteins conserved only in outcrossing
species. Sperm frommss-null males of outcrossingC. remanei failed to compete with wild-type
sperm, despite normal fertility in noncompetitive mating. Restoringmss to C. briggsae males
was sufficient to enhance sperm competitiveness.Thus, sex has a pervasive influence on
genome content that can be used to identify sperm competition factors.

S
ex between individuals is nearly ubiqui-
tous in eukaryotic life (1). However, in mul-
ticellular organisms, the costs of sex and
scarcity of mates sometimes favor the evo-
lution of uniparental reproduction through

asexual parthenogenesis or self-fertilization (2).
Such changes in sexual reproduction have con-
sequences for both sexual traits and genome
content. Comparative genomics using closely
related species with different modes of sexual
reproduction can reveal sex-related factors that
might otherwise remain cryptic. In the nematode
species C. elegans, C. briggsae, and C. tropicalis,
animals with two X chromosomes that would
normally be female have evolved into self-fertilizing
hermaphrodites (Fig. 1A) (3). Nearly all progeny of
these selfing XX hermaphrodites are themselves
XX. Rare haplo-X (XO) male progeny experience
weaker sexual selection than males from out-
crossing species, exhibit atrophy of traits required
for efficient mating (4–7), and are hypersensitive
to pheromone-induced mortality (8). Sexually an-
tagonistic sperm-female interactions have also
been relaxed in self-fertile Caenorhabditis (9).
Self-fertileCaenorhabditishave smaller genomes

and transcriptomes than outcrossingCaenorhabditis
(10, 11), as also observed in the selfing plant
Arabidopsis thaliana (12). However, comparisons
of self-fertilizing to outcrossing Caenorhabditis
have involved species as divergent at the nucle-

otide level as humans are frommice (10, 13), so it
remains unclear how quickly genomic shrinkage
occurs. We hypothesized a direct link between
the degradation of sexual traits and genome con-
traction in selfing species. Here, we describe ge-
nomic resources and functional experiments that
confirm its existence.

Comparison of C. nigoni and
C. briggsae genomes

Of the ~50 known Caenorhabditis species, the
most closely related pair with different sexual
modes are the outcrossing C. nigoni and the
selfing C. briggsae (14–16). They remain partially
interfertile, yet they have numerous genetic and
reproductive incompatibilities (9, 15, 17–19).
To compare their genomes, we assembled the
C. nigoni genome from 20-kb Pacific Biosciences
(PacBio) and Illumina short-read libraries (table S1)
(20). The finalC.nigoni chromosome-scale genome
assembly totaled 129Mbwith a size-weightedme-
dian (N50) contig lengthof 3.3Mb; itwasestimated
as 99.6%complete (21). The genomewas 19% larger
than that of C. briggsae (108Mb) but was similar
in size to genomes of the more distantly related
outcrossing speciesC. remanei,C. sinica,C.brenneri,
and C. japonica, which range from 131 to 135 Mb
(Fig. 1A) (10). Therefore, larger genome sizes were
probably the ancestral condition, and genomic
shrinkage occurred in the C. briggsae lineage
after it diverged from C. nigoni. More than 90%
(118 Mb) of the assembly can be aligned to the
chromosomes of C. briggsae without large trans-
locations or inversions, despite megabase-sized
contigs (fig. S1). Thus, the two genomes are es-
sentially colinear but differ in many small species-
specific segments. C. nigoni’s six chromosomes
are 6.6 to 16.6% larger than their C. briggsae
homologs (table S2).
We used whole-genome alignment to iden-

tify species-specific genomic segments (20). In

C. nigoni, 47.7 Mb (36.9%) did not align with
C. briggsae, and C. briggsae had 27.7 Mb (25.6%
of 108.4 Mb) that did not align with C. nigoni.
This 20.0-Mb difference accounted for 95% of
the difference in genome sizes. Nonalignable ge-
nomic regions were concentrated on the distal
arms of all six holocentric chromosomes, where
small inversions and repetitive sequences were
abundant and gene densities were low (Fig. 1B).
These regions were mostly small (median ~500
base pairs; Fig. 2A), but larger (1 to 65 kb) in-
sertions or deletions accounted for 17Mb (81%)
of the genome size difference (Fig. 2B). In both
assemblies, nonalignable sequences were most
common in intergenic regions and introns (fig.
S2). C. nigoni harbored 5.4 Mb more species-
specific protein-coding sequences thanC. briggsae,
consistent with a net loss of genes in C. briggsae
(see below). For orthologous genes in both spe-
cies, exon lengths were highly correlated (Fig. 2C
and table S3). In contrast, ortholog intron con-
tent was weakly correlated and was significantly
larger in C. briggsae. Because both genomes had
similar repetitive DNA fractions (C. nigoni 27%
versus C. briggsae 25%), disproportionate loss
of repetitive sequences (seen in plants) did not
contribute to different genome sizes (table S1)
(10, 12, 22).

Impact of genome shrinkage on
C. briggsae gene content
We predicted 29,167 protein-coding genes for
C. nigoni (table S4), with 88.9% (25,929) being
expressed in adults [≥0.1 transcripts per million
(TPM)]. By equivalent methods, we predicted
22,313 genes in C. briggsae (20), 23.5% less than
C. nigoni. The published gene annotations for
C. briggsae (23) were even fewer (21,814 genes).
This 6854-gene difference could have several

causes, including gene family contraction and
loss of sequence classes in C. briggsae, as well as
C. nigoni–biased gain of novel sequences. We
compared genes of C. briggsae and C. nigoni to
genes of the outgroups C. remanei, C. brenneri,
and C. elegans (20). In C. nigoni, 24,341 genes
(83.5%) were orthologous to 21,124 C. briggsae
genes, reflecting larger multigene families in
C. nigoni versus C. briggsae (Fig. 3A and table
S4) (24). Another 2949 C. nigoni genes without
C. briggsae orthologs (10.1%) represent losses in
C. briggsae based on homologs in Caenorhabditis
outgroups (fig. S3). Finally, 1877 C. nigoni genes
(6.4%) lacked homologs entirely and were classed
as orphans. These genes could be exceptionally
divergent, recently arisen in C. nigoni, or arisen
shortly before the C. nigoni–C. briggsae split but
then lost in C. briggsae. Overall, gene loss in
C. briggsae appears to be the primary driver of
the gene number difference.
To characterize genes lost in C. briggsae, we

first compared Pfam protein domains encoded
by C. nigoni versus C. briggsae. We found 26 Pfam
domains that were overrepresented in C. nigoni
(fig. S4 and table S5); of these, seven were con-
sistently overrepresented in outcrossing C. nigoni,
C. remanei, and C. brenneri relative to the selfing
species C. briggsae and C. elegans. Three of these
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domains (F-box, FBA_2/F-box associated, and BTB)
are predicted to mediate protein-protein inter-
actions. Male-female Caenorhabditis had 272 to
1074 genes in these families, whereas hermaph-
roditic Caenorhabditis had only 101 to 258 genes
per family. Two other domains (Peptidase_A17
and DNA_pol_B_2) are associated with repet-
itive DNA. The final two overrepresented do-
mains were Asp_protease_2 (possibly associated
with retroelements) and DUF3557 (a nematode-
specific domain, currently of unknown function).
One overrepresented domain specific to C. nigoni
was zf.RING2_finger; the RING domain gene

spe-42 is important for sperm-egg interactions
in C. elegans (25).
Because C. nigoni–specific genesmight encode

fast-evolving proteins that lack known domains,
we compared other gene properties. We found
that although genes encoding medium to large
proteins (≥200 residues) are similar in frequency
in both species, C. nigoni encodes dispropor-
tionately more small proteins (<200 residues)
than C. briggsae (Fig. 3B and table S6). As seen
in other Caenorhabditis (11), genes with male-
biased expression outnumber female-biased genes
(Fig. 3C and table S7). However, even against this

background, C. nigoni genes without C. briggsae
homologs are disproportionatelymale-biased in
expression. Preferential loss of small and fast-
evolving proteins thus occurred in C. briggsae
after the adoption of selfing.

mss genes encode sperm glycoproteins
lost in hermaphrodites

We hypothesized that genes with highly male-
biased expression that are present in outcrossing
species, but lost in selfing species, might function
in sexual selection. Among such genes we iden-
tified the mss (male secreted short) family. We
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Fig. 1. The phylogenetic relationship of Caenorhabditis and
comparison of the C. nigoni and C. briggsae genome assemblies.
(A) Phylogeny of Elegans supergroup Caenorhabditis [adapted from (3)]
with outcrossing species producing XX females indicated in blue, and
self-fertile lineages with XX hermaphrodites indicated in red.
(B) Chromosomal alignments and genomic features over 200-kb

chromosomal intervals. Tracks from outside to inside: 1, positions (in Mb)
of the six chromosomes of C. nigoni and C. briggsae; 2, gene density
heat map (darker shade indicates higher density); 3, repeat frequency;
4, inversion frequencies; 5, percentage of sequence lacking homology in
the other assembly (representing either deletions or species-specific
gains); 6, DNA sequence synteny.
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found one to fourmss genes in the outcrossing
speciesC. nigoni,C. sinica,C. remanei,C. brenneri,
C. sp. 34, C. japonica, and C. afra, but found
none in the selfing C. elegans, C. briggsae, and
C. tropicalis. Themss family encodes small pro-
teins (median 111 residues)withN-terminal signal
sequences, rapidly evolving central domains with
several predicted O-glycosylation sites, and C-
terminal glycosylphosphatidylinositol (GPI) anchor
membrane attachment signals (Fig. 3D). Enzyme
treatments confirmed that MSS proteins were
heavily glycosylated (fig. S5).
Although we failed to detect mss genes in

selfing species, we did discover a larger family
ofmss-related protein (msrp) genes, within which
mss forms a monophyletic clade (fig. S6) (20).
Notably,msrp genes are found both in outcross-
ing Caenorhabditis and in the hermaphroditic
C. elegans, C. briggsae, and C. tropicalis (fig. S6).
Like MSS proteins, MSRP proteins are small and
are predicted to be secreted, O-glycosylated, and
(often) GPI-anchored. Bothmss andmsrp genes
show male-biased expression in C. nigoni and
other species (table S8). In cases where their
chromosomal loci can be identified, mss and

msrp genes are autosomal; this linkage fits a
general pattern in heterogametic male species
of male-biased genes being autosomal rather
than X-chromosomal [(26) and references therein].
Becauseweobservedmssgenes in twoC. elegans

outgroups (C. japonica and C. afra; fig. S6 and
table S8), their absence from hermaphrodites
most likely reflects independent gene losses rath-
er than phylogenetic restriction to close relatives
of C. nigoni. Examination of the C. briggsae ge-
nomic region syntenic to the C. nigonimss locus
revealed fragments of mss-1 and mss-2 coding
sequences and a nearly complete mss-3 pseudo-
gene (Fig. 3E) (20). Mutations that ablate Cbr-
mss-3-ps function in the AF16 reference strain
also occur in 11 wild isolates that span the known
diversity of C. briggsae (fig. S7) (20, 27). Orthologs
of all three C. nigoni mss genes were therefore
present in the common ancestor of C. nigoni and
C. briggsae but were lost in C. briggsae before its
global diversification.
In the outcrossing species C. remanei, mss

transcripts were expressed only in adult males
(Fig. 4A), with strongest expression in sperma-
tocytes during mid-pachytene of meiosis I (Fig.

4B). To determine subcellular localization of MSS
peptides, we used CRISPR/Cas9 editing to tag
the Cre-mss-1 gene of C. remanei with the he-
magglutinin (HA) epitope. Crem-MSS-1::HA ex-
pression was first detected in large vesicles and
on the plasma membrane of spermatocytes, with
intensity increasing and localization restricted to
secretory vesicles in mature spermatids (Fig. 4, C
to E). The secretory vesicles of nematode sperm,
known as membranous organelles (MOs), fuse
with the plasma membrane upon ejaculation and
sperm activation (28).
MSS peptides might be processed by a signal

peptidase to release a soluble fragment into the
MO lumen, which could then be dumped into
seminal fluid upon sperm activation. However,
their transient plasma membrane localization
in spermatocytes and predicted C-terminal GPI
attachment signals (Fig. 3D and table S8) sug-
gested that MSS peptides might instead be at-
tached tomembranes. Consistent with this latter
hypothesis, Crem-MSS::HA remained associated
with activated spermdissected from inseminated
females (Fig. 4F). We observed staining of the
plasma membrane and of MO-derived punctae
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Fig. 2. Size distributions of insertion-deletion variants. (A) Size
distribution of species-specific sequences in the C. briggsae–C. nigoni
whole-genome alignment. Black, sequences present in C. nigoni alone;
gray, sequences present in C. briggsae alone. (B) Contribution of
different species-specific sequence types to genome size. (C) Regression
analysis of total exon and intron lengths for 6404 one-to-one

C. briggsae–C. nigoni orthologs on autosomes and 1394 orthologs on the
X chromosome. Interspecies differences were insignificant for either
exon set (P = 0.378 for autosomes, P = 0.668 for X), but introns on
autosomes (P = 1.53 × 10−10) and on the X chromosome (P = 1.2 × 10−5)
were significantly larger in C. briggsae (all P values: Wilcoxon rank-sum test
with Bonferroni correction).
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(Fig. 4G), which may be fused vesicles that remain
as cup-like invaginations (29). Persistence of MSS
on the surface of sperm after activation sug-
gested that MSS acts cell-autonomously, rather
than through the seminal fluid.

mss genes mediate sperm competition
and affect sex ratios

Because the four C. remanei mss paralogs form a
7-kb tandem array (fig. S8A), we deleted the
entiremss cluster via CRISPR/Cas9 editing. To
avoid inbreedingdepressionassociatedwithhomo-
zygosity of entire chromosomes (30) (fig. S8B),

we generated themss deletion in two different
C. remanei strains and crossed them to create
hybrid mss-null mutants. The resulting males
showed no intrinsic fertility defects, as judged
by overall brood size (fig. S8C). However, when
competing against heterozygousmss(null/+)males,
mssmutants sired fewer progeny thannonmutants
in both offense (mutantmale second) and defense
(mutant male first) scenarios (Fig. 5, A and B).
Themss family is therefore required formale sperm
competitiveness in multiple mating situations, but
not for fertility itself. Sperm lacking MSS com-
pete poorly even when the female reproductive

tract is conditioned by wild-type sperm. Thus,
MSS proteins probably do not function as a se-
creted signal, but instead act cell-autonomously.
We then introduced mss-1 and mss-2 genes

from C. nigoni into C. briggsae via a low-copy,
germline-expressed MSS transgene; this trans-
gene was strongly expressed in C. briggsaemales,
while also being detectable in hermaphrodites
(fig. S9). Remarkably, sperm from transgenic
mss(+) C. briggsae males outcompeted those
of wild-type males (Fig. 5, C and D). After mss(+)
sperm were exhausted, however, wild-type mss
(null) sperm were still fertilization-competent
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homologs. (C) For genes with sex-biased expression, male bias was seen
for 50.9% of 6804 genes with C. briggsae homologs [“C. briggsae (+)”]
but was significantly overrepresented (70.9%) among 605 genes lacking
C. briggsae homologs [“C. briggsae (–)”; P < 0.0001, Fisher exact test;
table S9]. (D) Alignment of predicted MSS homologs from outcrossing

C. nigoni, C. sinica, C. remanei, and C. brenneri (table S8) (20), with
protein domains indicated above. Amino acid abbreviations: A, Ala;
C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met;
N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
(E) Comparison of mss gene regions in C. nigoni and C. briggsae.
Pastel shapes connect homologous sequences. Except for Cni-mss-3, all
genes are transcribed from left to right. Genes surrounding the three
C. nigoni mss paralogs are conserved in C. briggsae, but only fragments
and a pseudogene (Cbr-mss-3-ps) of the mss genes remain. The
pseudogene has a lost start codon and a +1 frameshift. CBG26068
has a novel 3′ exon derived from part of the Cni-mss-1 second exon. See
fig. S7 and (20) for details.

RESEARCH | RESEARCH ARTICLE
on F

ebruary 1, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


(Fig. 5, C and D). In addition,mss(+) males were
more consistently able to suppress use of a her-
maphrodite mate’s self-sperm (Fig. 5E).
Because 50%ofoutcrossprogenyaremalewhere-

as selfed progeny are almost exclusively hermaph-
rodites,we examined the effect of transgenicmss on
long-term sex ratios inC. briggsae populations. We
started both wild-type and mss(+) C. briggsae
populations with a 1:1 male-to-hermaphrodite
sex ratio and examined themover time.Wild-type
C. briggsae showed a rapid decline of males, as
previously seen in C. elegans (7, 31). However,male
frequency remained elevated in the mss(+) strain
(Fig. 5F), only declining after 12 generations. The
expression of MSS proteins was thus sufficient to
shift population sex ratios toward parity.

Discussion

Comparison of the C. nigoni and C. briggsae
genomes revealed that C. briggsae experienced
rapid contraction of chromosomes and loss of
protein-coding genes. However, loss of ances-
tral genomic content in C. briggsae does not

fully explain their genomic divergence; the on-
going birth of novel sequences in both species,
along with loss of ancestral DNA in C. nigoni, is
also important. Net shrinkage of the C. briggsae
genome therefore resulted from a substantial in-
crease in the ratio of losses to gains. These losses
included many coding sequences, reducing the
C. briggsae gene count by nearly one-quarter.
Multiple observations implicate the evolution

of selfing as the cause of genome shrinkage in
C. briggsae. Reduced genome and transcriptome
sizes are observed in all three selfingCaenorhabditis
species (10, 11). Continued interfertility ofC. briggsae
and C. nigoni (15) indicates that self-fertility and
genome shrinkage evolved in quick succession.
Genes with male-biased expression, such as the
mss family, are disproportionately and consistent-
ly lost from selfing species (11). This suggests that
genes with male reproductive functions that are
either dispensable or maladaptive in the new sex-
ual mode are purged from the genome. Finally,
the net genome shrinkage we observed has been
predicted to arise from a partially selfing mating

system coupled with transmission distortion of
autosomal deletion alleles (32, 33). Suchdistortion
is driven by imbalanced chromatin during meio-
sis I of XO males, and causes preferential inheri-
tance of shorter alleles by hermaphrodite progeny
and their increased fixation in the population.
Larger autosomal deletions, influenced most

by the deletion segregation distortion mechanism,
are primarily responsible for the smaller genome
of C. briggsae (Fig. 2). However, such deletions
and net shrinkage were also found on the X chro-
mosome (table S2), which should be unaffected.
Moreover, orthologous genes have larger introns
in C. briggsae than in C. nigoni (Fig. 2), and in-
trons constitute a greater fraction of theC. briggsae
genome (fig. S2). X-chromosomal C. briggsae in-
trons are also larger than those of the outgroup
C. remanei (10) (fig. S2C), which suggests that
introns of many genes expanded in C. briggsae.
Thus, additional processes must also contribute to
shrinkage of the C. briggsae genome. Spontaneous
short (1- to 5-nucleotide) mutations in C. elegans
are biased toward insertions rather than deletions
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Fig. 4. C. remanei MSS is a
male-specific protein localized
to the surface of activated sperm.
(A) Quantitative reverse transcription
polymerase chain reaction (for
Cre-mss-2) of mixed-sex populations
(top) versus larval and adult
sex-specific populations (bottom),
showing that mss expression is
specific to adult males. Data
are means ± SEM. Female data
are two to three orders of
magnitude below male data.
(B) Cre-mss-1 transcripts are
detected in pachytene-stage
primary spermatocytes.
(C) Dissected testis expressing
HA-tagged Cre-MSS-1, viewed
with differential interference
contrast (DIC, left) or anti-HA
confocal fluorescence (right)
microscopy. Cre-HA-MSS-1
is first detectable in spermatocytes
(sc) and becomes enriched
in spermatids (st). (D) Some
Cre-HA-MSS-1 is localized to the
plasma membrane of spermatocytes,
as indicated by the arrow. Blue
fluorescence: Hoechst-stained DNA.
(E) Enlarged view of the boxed
region in (C), showing complete
restriction to membranous organelles
(MOs). (F) Cre-HA-MSS-1 remains
attached to sperm after activation
and transfer to the female.
(G) Cre-HA-MSS-1 sperm cells
dissected from a female and
stained with anti-HA immunohisto-
chemistry, imaged with DIC (top) and
confocal (bottom) microscopy.
Cre-HA-MSS-1 is visible in the plasma
membrane and fused MO remnants.
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(34), although biases in formation of larger indels
remain uncharacterized. Regardless, the relative
rates of insertion and deletion mutations likely
evolved too slowly to explainC. briggsae’s reduced
genome size, given its recent divergence from
C. nigoni (27). Gene loss can sometimes be adapt-
ive (35, 36) and has been proposed as a factor pro-
moting genome shrinkage in selfingCaenorhabditis
(10). Our results for the C. nigoni–C. briggsae pair
support this hypothesis.
Genes encoding small proteinswithmale-biased

expression are disproportionately lost inC. briggsae;
here, mss provides an instance affecting repro-
duction. Unlike comp-1, which encodes a kinase
required for male versus hermaphrodite sperm
competition in C. elegans (37) and which is con-
served regardless of mating system, we foundmss
orthologs only in outcrossing species. In inter-
species matings, sperm from males of outcross-
ing species rapidly invade the ovaries and body
cavities of selfing hermaphrodites, sterilizing or
killing them (9). This cryptic toxicity of out-
crossing sperm is likely due to ongoing sexual

selection in outcrossing species. Given their pro-
nounced role in sperm competition, MSS pro-
teins may contribute to sperm invasiveness.
How MSS improves sperm competitiveness

remains unclear, but mature MSS proteins are
substantially glycosylated (fig. S5). Such post-
translationalmodificationmay impose little con-
straint onMSS proteins, explaining how they can
have weak sequence conservation yet strong func-
tional conservation. Another poorly conserved
O-glycosylated protein, themucin PLG-1, forms
a copulatory plug found in all male-female
Caenorhabditis species but lost in many wild
isolates of C. elegans (4). Glycoproteins form the
glycocalyx coat of mammalian sperm and play
important roles in fertility (38). Caenorhabditis
provides a useful model for how the glycocalyx
and female tissues interact and how these inter-
actions affect sperm competition.
Independent loss of mss in the three known

hermaphroditic Caenorhabditis species could
reflect relaxed sexual selection coupled with mu-
tation and drift, or it could reflect adaptive con-

vergence. Other changes in selfing species—such
as loss of plg-1 and of plep-1, which mediates re-
liable male discrimination between the vulva and
excretory pore (4, 6)—are likely due to relaxed
selection. However, restoring mss to C. briggsae
enhances male fitness (Fig. 5, C and D), and
mutations inactivating the Cbr-mss-3-ps pseudo-
gene are not deletions that would be subject to
loss via transmission ratio distortion (fig. S7).
These findings suggest that loss ofmssmay instead
reflect adaptive convergence, permitting proto-
hermaphrodites to adapt to a selfing lifestyle and
resolve emergent sexual conflicts related tomating
(39–41). Selfing Caenorhabditis species lack in-
breeding depression (42) and reproduce in spa-
tially isolated habitats colonized by small numbers
of founders (3). Reduced male mating success
creates hermaphrodite-biased sex ratios (Fig. 5F),
which may be adaptive under these conditions
(41, 43–45). Thus, evolutionary transitions in re-
productive mode may produce conditions for se-
lection to rapidly eliminate formerly constrained
reproductive genes.
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Fig. 5. mss genes are necessary for
sperm competitiveness in an outcrossing
species, and sufficient to enhance it
in a selfing species. (A) When mated after a
wild-type male (“offense”), C. remanei mss
(nmDf1/+) males sire more than twice the
progeny of nmDf1/nmDf2 mss-null mutants
(N = 16 for both). (B) When allowed to
mate first (“defense”), heterozygous
C. remanei mss(nmDf1/+) males have a
slight advantage over wild-type males;
mss-null mutants, in contrast, do not
(N = 15 for both). Heterozygote success
is assumed to be double the observed
nmDf1 frequency in their progeny.
For both defense and offense, P < 0.01
(two-sample Kolmogorov-Smirnov test).
(C and D) Wild-type young C. briggsae
hermaphrodites were mated sequentially
(4 hours each) with conspecific males
carrying either a C. nigoni mss(+) transgene
or a control mCherry::histone reporter
(RW0025). Progeny laid 0 to 18 hours and
18 to 42 hours after the second mating
were scored for green (MSS+), red (RW0025),
or no (self) fluorescent markers. In both
offense (C) and defense (D), MSS+ males
sire several times as many progeny as control
males in the first laying window. *P < 0.001.
(E) MSS+ C. briggsae males suppress
selfing more effectively than do control
AF16 (wild-type) males. Strain JU936
is a second control strain bearing two
transcriptional GFP reporters in the AF16
background. *P < 0.001 (Kolmogorov-Smirnov
test); ns, not significant. (F) Male frequency
in MSS+ and wild-type AF16 C. briggsae
populations in which male frequency
was artificially elevated to 50% at the
start of the experiment. In all panels
except (E), error bars denote SD.
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to selection to reduce male reproductive function.
compromises sperm competitiveness. Thus, in nematodes, selfing appears to result in a decrease in genome size owing 

 males. One of the implicated gene families, the mss family,C. nigonihave homology with RNAs expressed primarily in 
this size difference appear to involve a decrease in protein-coding genes and changes in other types of sequences that
experienced a substantial decrease in genome size since the two species' recent divergence. The underlying causes of 

 hasC. briggsae. C. briggsae and compared it with that of its close relative, the selfing C. nigonioutcrossing nematode 
 generated a genome assembly for theet al.species. Genome size differs widely among these different species. Yin 

 genus of nematodes includes a mix of closely related outcrossing and self-fertilizing (selfing)CaenorhabditisThe 
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