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Invited Review

Innate immune response in CF airway epithelia: hyperinflammatory?

Terry E. Machen
Department of Molecular and Cell Biology, University of California, Berkeley, California

Machen, Terry E. Innate immune response in CF airway epithelia: hyper-
inflammatory? Am J Physiol Cell Physiol 291: C218 –C230, 2006;
doi:10.1152/ajpcell.00605.2005.—The lack of functional cystic fibrosis (CF)
transmembrane conductance regulator (CFTR) in the apical membranes of CF
airway epithelial cells abolishes cAMP-stimulated anion transport, and bacteria,
eventually including Pseudomonas aeruginosa, bind to and accumulate in the
mucus. Flagellin released from P. aeruginosa triggers airway epithelial Toll-
like receptor 5 and subsequent NF-�B signaling and production and release of
proinflammatory cytokines that recruit neutrophils to the infected region. This
response has been termed hyperinflammatory because so many neutrophils
accumulate; a response that damages CF lung tissue. We first review the
contradictory data both for and against the idea that epithelial cells exhibit
larger-than-normal proinflammatory signaling in CF compared with non-CF
cells and then review proposals that might explain how reduced CFTR function
could activate such proinflammatory signaling. It is concluded that apparent
exaggerated innate immune response of CF airway epithelial cells may have
resulted not from direct effects of CFTR on cellular signaling or inflammatory
mediator production but from indirect effects resulting from the absence of
CFTRs apical membrane channel function. Thus, loss of Cl�, HCO3

�, and
glutathione secretion may lead to reduced volume and increased acidification
and oxidation of the airway surface liquid. These changes concentrate proin-
flammatory mediators, reduce mucociliary clearance of bacteria and subse-
quently activate cellular signaling. Loss of apical CFTR will also hyperpolarize
basolateral membrane potentials, potentially leading to increases in cytosolic
[Ca2�], intracellular Ca2�, and NF-�B signaling. This hyperinflammatory
effect of CF on intracellular Ca2� and NF-�B signaling would be most
prominently expressed during exposure to both P. aeruginosa and also endo-
crine, paracrine, or nervous agonists that activate Ca2� signaling in the airway
epithelia.

Pseudomonas aeruginosa; Toll-like receptor; NF-�B; oxidative stress; acidic air-
way surface liquid; calcium

ARE INNATE HOST RESPONSES IN CF
“HYPERINFLAMMATORY”?

UNDER NORMAL CONDITIONS, the airways remain relatively
sterile due to the efficient action of the mucociliary escalator.
The lack of functional cystic fibrosis (CF) transmembrane
conductance regulator (CFTR) in the apical membranes of CF
airway epithelial cells abolishes cAMP-stimulated anion trans-
port, and bacteria, eventually including Pseudomonas aerugi-
nosa, accumulate in the mucus (180) and trigger a dramatic
inflammatory response to the infection. The innate immune
response of the epithelial cells to these bacteria in the airway
surface liquid (ASL) involves the activation of receptors and
signaling pathways, production, and release of proinflamma-
tory cytokines and the recruitment of macrophages and neu-
trophils to the infected region. The most important P. aerugi-
nosa product triggering the early inflammatory responses is
flagellin, the monomer that comprises the structural shaft of the
flagellum (134). These flagellin subunits activate Toll-like

receptor (TLR)-5 (58) in the apical membranes of airway
epithelial cells (179, 199). Signaling through MyD88-IRAK-
TRAF and p38 MAP kinases (199), and perhaps Ca2� (1, 137),
activates NF-�B and AP-1 transcription factors that regulate
proinflammatory genes. Although TLRs 2, 6, 9, and 10 and
perhaps others are also expressed (5, 52, 61, 199), they appear
to be much less important in early responses to the luminal
bacteria (59, 179, 199). In particular, LPS and other released
bacterial products (10, 52, 112) appear only to activate weak
inflammatory responses in airway epithelia (179), and then
only at very high concentrations (59, 71). It should be noted
that although the earliest inflammatory signaling in response to
P. aeruginosa seems to be controlled by flagellin-TLR5-
NF-�B, other bacterial products and epithelial signaling path-
ways may be important during infections with other common
CF pathogens, including Stapholococcus aureus (50, 137),
Haemophilus influenzae (19, 138), or Burkholderia cepacia
(181). This may also pertain to the situation occurring during
persistent, extended infections with P. aeruginosa, because
under these conditions the bacteria become immotile, presum-
ably resulting from the loss of flagella (see 152). In this
circumstance, inflammation may be maintained by P. aerugi-
nosa secreting quorum-sensing homoserine lactones (162),
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alginate (30), pyocyanin (34, 136), and/or other secreted fac-
tors like proteases and exotoxin A: any or all of these may
trigger proinflammatory signaling in airway epithelial cells. P.
aeruginosa also secrete other virulence factors that may con-
tribute to the proinflammatory state (see Ref. 152 for review).

Although the inflammatory responses to the bacteria occur
on a grand scale in CF airways, there is great uncertainty
whether the CF airway epithelia exhibit such a large inflam-
matory response because so many bacteria have accumulated,
or, alternatively, because the epithelia have an inherent defect
leading to a hyperinflammatory state, in which there is consti-
tutive production and secretion of inflammatory cytokines and
increased responses to the presence of bacteria.

Some studies have found increased numbers of inflamma-
tory cells and IL-8 in bronchoalveolar lavage (BAL) from CF
patients with either mild disease symptoms or in the absence of
demonstrable microorganisms (16, 17, 80, 111, 115, 150, 176).
There is also in vivo evidence of reduced production of
anti-inflammatory products like IL-10 (16, 17) and lipoxins
(76). Many studies have found that CF airway epithelial cells
in culture have constitutively active NF-�B and upregulated
expression and secretion of IL-8 and other inflammatory me-
diators (12, 23, 33a, 35, 36, 41, 54, 90, 167, 171, 174, 183, 186,
190). In some cases, these phenotypes were largely reversed in
CFTR-corrected cells or in cells incubated at 25°C, which
increased mutant CFTR movement from the ER to the plasma
membrane (e.g., 41, 159). This apparent inherent hyperinflam-
matory state may be further stimulated by the presence of P.
aeruginosa (39, 176), though not always (23).

Microarray methods have recently been used to test for
differences in gene expression in CF vs. non-CF or CFTR-
corrected cells. Some experiments have shown that patterns of
gene expression (i.e., specific genes) were different in CF vs.
CFTR-corrected cell (41, 141, 167). Whitsett and colleagues
(197, 198) have described similar differences in expression of
specific genes in the lungs of wild-type, CF knockout, and
�F508CFTR mice at different stages of development. The
most prominent effects of the lack of wild-type CFTR expres-
sion were on genes related to redox balance and regulation
[particularly in genes related to glutathione (GSH) homeosta-
sis], heat shock or stress, ion transport, and CFTR-interacting
proteins (198). Although there were increases in expression of
some pro-inflammatory genes (e.g., IL-1�, TNF-�-induced
protein 3, colony stimulating factor-3 receptor), most of these
changes were relatively small (�2-fold) and there were no
increases in the well-known proinflammatory mediators like
IL-8 and TNF-� (197). Overall, these microarray studies of the
lungs of mice were consistent with the studies of cells in
culture in showing that the absence of CFTR had selective
effects to regulate specific genes, but, unlike the in vitro
studies, the in vivo results indicated that genes involved in
regulating inflammatory processes were not prominently af-
fected.

In contrast, Perez and Davis (124) found similar gene
expression patterns but different magnitudes of responses to P.
aeruginosa strain PAO1 in CF vs. non-CF cells. Kelley and
colleagues (78, 79, 88, 168) found that CF cells have inefficient
Jak-stat1 signaling, reducing nitric oxide synthase 2 expres-
sion. Exuberant NF-�B signaling (174) or reduced nitric oxide

production leading to destabilized I�B and increased NF-�B
activity (84) in CF have been proposed to explain these
hyperinflammatory phenotypes.

In contrast to these studies showing apparent intrinsic hy-
perinflammation in CF cells, Dakin et al. (32) showed that
early infection in CF was the likely explanation for the en-
hanced inflammatory responses in CF lungs. This result was
consistent with other in vivo measurements of inflammatory
mediators in BAL fluids showing that increased inflammation
in CF followed bacterial infections (5). Recent studies using
terminal restriction fragment length polymorphism profiling of
sputum from both adult (149) and pediatric (148) CF patients
have shown many (�40) bacterial species that have not been
previously identified in CF. Most of these bacteria were met-
abolically active, indicating that they could potentially play a
role in pathogenesis. It therefore seems possible that previous
in vivo studies that observed inflammation in the apparent
absence of infection may have suffered from undetected bac-
teria.

Technical differences may also explain the apparent hyper-
inflammatory phenotype observed in vitro. Thus a comprehen-
sive study by Aldallal et al. (3) compared the cell lines used by
many research groups, and also used adenovirus to express
CFTR in CF cells to ensure isogenic comparisons between the
CF and the CFTR-corrected cells, including primary airway
epithelial cells. They showed that different responses of nor-
mal, CF and CFTR-corrected airway epithelia were likely due
to differences in cells, and were unrelated to the presence of
CFTR. Pizurki et al. (130) used the adenoviral method to
express CFTR in a CF cell line and similarly showed that
inflammatory responses to cytokines were similar in CF and
CFTR-corrected cells. Also, Becker et al. (10) showed that
normal and CF primary airway epithelial cells exposed to
bacterial supernatants caused equivalent activation of cytokine
expression and secretion, though they did observe differences
between CF and non-CF after 24 h of treatment. Joseph et al.
(74) have also shown that long-term incubation with P. arugi-
nosa caused larger innate immune responses in CF cells com-
pared with non-CF, consistent with previous work (90) show-
ing that long-term bacterial exposure may magnify differences
in inflammatory responses between CF and non-CF or CFTR-
corrected epithelia.

Although a firm conclusion is presently impossible, we
propose that subtle technical artifacts have contributed to the
apparent proinflammatory phenotype observed by many inves-
tigators in studies of CF vs. non-CF or CFTR-corrected airway
epithelia. In vivo experiments demonstrating inflammatory
mediators in CF BAL fluids in the absence of bacterial infec-
tions may have suffered from undetected bacteria or bacterial
products. Although it is clear that the CF cell line (IB3)
exhibits a pro-inflammatory status compared with matched
cells with integrated wild-type CFTR (C38) (e.g., 36, 41, 166,
167), there are no differences in constitutive or stimulated
inflammatory responses among IB3 cells, IB3 cells that had
been CFTR-corrected using an adenovirus and cells infected
with adenovirus expressing a control transgene (3), indicating
that that there were non-CFTR-dependent differences between
the IB3 and C38 cell lines. Similar problems may explain
proinflammatory differences observed between other similar
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pairings, including 9/HTEO-/pCEP-R (“CF”) � 9/HTEO-/
pCEP (non-CF) cells (e.g., 52).

In this regard, Babnigg et al. (6) have observed variability in
store-operated Ca2� influx into human embryonic kidney-293
cells, and they argue, based on a careful analysis of this
variability, that isolating clones from a heterogeneous popula-
tion can lead to clones with significantly different Ca2� influx,
even though they were isolated from the same parent popula-
tion. They further argue that it is important to compare effects
of gene expression based on transfections of many cells
(�200). Growing only a few transfected cells can yield a
biased population. This problem might contribute to the appar-
ent differences in inflammatory properties of the IB3 vs. C38
cells or the pCEP vs. pCEPR cells. Further use of the adeno-
viral or similar method to make isogenic comparisons between
CFTR and �F508-CFTR-expressing cells would help settle
such controversies because the method leads to expression of
the CFTR in a high percentage of the cells and also permits
comparison with vector controls.

In vitro studies of CF vs. normal primary cells may also
suffer from subtle technical problems that contribute to appar-
ent hyperinflammation in CF. Ribeiro et al. (144) have shown
that �F508 CF primary bronchial epithelia exhibited a hyper-
inflammatory phenotype as defined by an increased basal and
bradykinin-induced IL-8 secretion during the first 6–11 days of
culture. However, this CF phenotype appeared to result from
the chronic exposure in vivo to inflammatory conditions be-
cause this phenotype was lost in long-term (30 to 40 days old)
cultures, and exposure of 30- to 40-day-old cultures of normal
airway epithelia to supernatant from mucopurulent material
from CF airways induced the hyperinflammatory phenotype in
the normal cultures. These results showed that the hyperin-
flammatory phenotype, which also included dramatic changes
in structure of the ER (144–146), was independent of mutant
CFTR expression and that this phenotype was maintained for
extended times in culture. Future studies of hyperinflammation
in CF vs. normal primary cells will need to account for these
prolonged effects of the in vivo inflammatory state on cells in
culture.

The absence of a proinflammatory phenotype in CF airway
epithelia would be consistent with the fact that CF epithelia
like sweat duct (139) and intestine (117) that normally express
CFTR at high levels do not apparently exhibit a proinflamma-
tory phenotype. For example, CF mouse small intestine exhib-
its increased expression of several inflammatory markers (e.g.,
serum amyloid A and complement factors) and large influx of
mast cells and neutrophils (117) compared with non-CF mice.
These data were consistent with data obtained from CF humans
showing increased levels of inflammatory markers (e.g., IL-1�
and IL-8) and nitric oxide, as well increased infiltration of
monocytes (21, 133, 164). However, this inflammatory re-
sponse in the intestine seems to have resulted solely from an
overgrowth of luminal bacteria (116). Thus, when CF mice
were treated with antibiotics, inflammatory markers and cells
were reduced to those of the non-CF murine intestines (116).
Interestingly, the exaggerated inflammation in CF mouse in-
testine was also reduced by treatment of patients with Lacto-
bacillus, indicating that the specific bacterial flora were impor-
tant determinants of the inflammation (116).

DOES ALTERED GOLGI pH IN CF CAUSE DEFECTS IN
MEMBRANE AND MUCUS BIOCHEMISTRY AND BACTERIAL
BINDING IN CF?

An early proposal (9), subsequently modified (131), was that
absence of CFTR altered Golgi pH, which in turn reduced
activity of Golgi enzymes leading to increased fucosylation
and decreased sialylation of membrane surfaces (155, 175),
including increased expression of asialoGM1 (9). P aeruginosa
produce lectins that bind to fucose moieties (65), and increased
asialoGM1 expression and increased P. aeruginosa binding
(12, 19, 53, 122) could increase inflammatory signaling. It has
also been proposed that flagellin may activate airway epithelial
cells by binding to asialoGM1 serving as co-receptor to TLR2
(1). In addition, some studies have shown altered cell surface
glycosylation (135) and altered binding of some lectins in CF
cells (38) or CFTR-expressing cells transfected with plasmids
expressing either CFTR regulatory (R) domain or full-length
�F508CFTR (96). A related concept is that mucins secreted by
CF airway epithelial cells could have similarly altered glyco-
sylation and/or sulfation (e.g., 92, 143, 175) leading to bacte-
rial binding.

However, several observations indicate that this altered
Golgi pH-altered surface glycosylation hypothesis is likely to
be incorrect. Seksek et al. (160) and Chandy et al. (26) showed
that there were no CFTR-associated differences in Golgi pH
(also see Ref. 49). Dunn et al. (39) similarly showed that pH of
the endosomal compartment was not altered in CF. Instead,
pH’s of the Golgi and other organelles of the secretory (and
perhaps endocytic) pathways appear to be regulated primarily
by H� pumping into the organelle lumen by the well known
H� v-ATPase balanced by a H� leak (26, 156, 195). The
CFTR likely plays no role in controlling pH of the Golgi
because the Golgi has its own K� and/or Cl� conductances
that dissipate the voltage associated with operation of the
electrogenic H� v-ATPase (see Ref. 104). In this circumstance,
Golgi pH will be determined by the activities and numbers of
the H� v-ATPase and the H� leak and also by the cytosolic
pH. Although CFTR conducts HCO3

� and its activity affects
cytosolic pH under some circumstances (132), there is no
evidence that steady-state cell pH is affected by CFTR in
airway epithelia.

In addition, CFTR expression in IB3 cells using an adeno-
virus had no effect on lectin binding (72), showing that previ-
ously measured differences were due to differences between
the cell lines that were not related to CFTR expression. Fur-
thermore, if Golgi pH and glycosylation and sulfation enzyme
activities were altered in CF, it would be expected that mucins
would exhibit altered glycosylation and sulfation. However,
several mucins showed identical glycosylation and sulfation in
CF and non-CF or CFTR-corrected cells (20, 96, 140, 150, 161).

DOES LOSS OF CFTR REDUCE BACTERIAL UPTAKE AND
DISPOSAL IN CF?

Pier and colleagues have proposed that P. aeruginosa binds
to CFTR at the first extracellular loop through interaction with
the outer core oligosaccharide portion of bacterial LPS, and
this binding leads to bacterial entry into the epithelial cell.
Recent experiments (51, 86) have shown that CFTR may be
located in lipid rafts. It is further proposed that bacterial uptake
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into the cells has two beneficial effects: activation of apoptosis
and cell sloughing aids in clearing bacteria from the airways,
and activation of NF-�B contributes to a subclinical, protective
innate immune response and inflammation that resolves the
infection (126–128). The absence of CFTR in the plasma
membrane therefore reduces bacterial clearance and contrib-
utes to an overexuberant proinflammatory response (127).

Several observations indicate that this altered bacterial up-
take hypothesis is likely to be incorrect. First, the hypothesis
has been based partly on electron or light microscopic obser-
vations of in vivo lung specimens, and it is difficult to deter-
mine whether apparent bacterial uptake into epithelial cells was
responsible for triggering apoptosis and desquamation or, al-
ternatively, that the desquamating cells were particularly sus-
ceptible to bacterial binding and uptake, as has been observed
in studies of bacterial binding on cultured airway epithelia
(94). Second, the hypothesis conflicts with a number of obser-
vations. First, under normal conditions, bacterial binding to the
apical surface, where CFTR is located, is infrequent (1 bacte-
rium per 100 epithelial cells: see Refs. 128 and 129), and P.
aeruginosa binding (94, 135) and uptake (46) occurs most
prominently at the basolateral membrane of epithelia. Second,
P. aeruginosa uptake may be negatively, not positively, cor-
related with CFTR expression (33). Finally, apical application
of flagellin alone, even in the absence of bacteria, activates
NF-�B in all columnar cells lining the airway surface (179),
showing that bacterial uptake is not required to induce a
cellular innate immune response. Thus, although P. aeruginosa
appear to be internalized by a small percentage of airway
epithelial cells and internalized bacterial products could acti-
vate NF-�B in these cells (178), it appears unlikely that CFTR
plays a role in these processes.

DOES REMOVAL OF CFTR FROM SIGNALING COMPLEX
TRIGGER INFLAMMATORY SIGNALING IN CF?

From measurements of regulated on activation of normal
T-expressed and presumably secreted production in both CF
and CFTR-corrected primary cells and cell lines IB3 cells
transfected with a variety of different CFTR mutants,
Schwiebert and colleagues (43, 159) concluded that CFTR
expression in the plasma membrane served to inhibit AP-1 and
NF-�B signaling through interactions with EBP50 (also termed
Na�/H� exchange regulatory factor), the cytoskeleton and
associated inflammatory activator proteins. In the absence of
CFTR in the apical plasma membrane, this inhibition would be
lifted, contributing to increased inflammatory signaling in CF.
Others have similarly proposed that absence of CFTR may
alter interactions with AMP kinase (AMPK) or annexin 1,
either of which could play roles in controlling inflammation.
AMPK is located in a similar cellular location as CFTR (54)
and appears to interact with regulate its channel activity (55–
57), indicating that a CFTR-AMPK “signaling complex” might
exist. In addition, CF airway epithelial cell lines and primary
cells expressed less AMPK and larger secretion of IL- and IL-8
than non-CF cells, and the apparent proinflammatory phe-
notype was reduced by treating CF cells with a chemical
activator of AMPK (54). The colon, pancreatic ducts, and
lung airways also express annexin 1 in similar location as

CFTR, and annexin 1 expression was reduced in CF (12).
Because annexin 1 regulates phospholipase A2 and may
serve an anti-inflammatory function in cells, it was argued
that hyperinflammatory responses of CF airways resulted
from the loss of annexin 1 (12).

Although the COOH-terminus of CFTR associates with
EBP50 and other PDZ-related proteins (e.g., 53, 97, 170, 189)
and could therefore serve as an organizer of a macromolecular
signaling complex in or near the apical membrane of airway
epithelia, it seems likely that there will be many more EBP50,
AMPK, and annexin 1 molecules than CFTRs in airway
epithelial cells, so the absence of CFTR may not alter the
distribution and organizational function of the potential signal-
ing partners. The modulation of AMPK through CF-induced
changes in cellular [Ca2�] (or other signaling events) was also
proposed as a connection between CFTR and AMPK (54). The
potential role of CFTR in affecting or controlling cellular
[Ca2�] will be discussed below. Alteration of annexin 1 func-
tion by cellular [Cl�] has been proposed to explain the differ-
ent annexin function in CF vs. non-CF cells (12), although
experiments on cultured nasal cells indicate that there is no
difference in cell [Cl�] between CF and non-CF (193). Over-
all, it seems likely that if there is a role for CFTR in controlling
proinflammatory signaling, this will be mediated not through
direct molecular interactions with a signaling complex but
through some indirect effect of CFTR on the cellular environ-
ment.

DOES HYPOXIA IN CF TRIGGER ROS PRODUCTION
AND HYPERINFLAMMATION?

The potential roles of hypoxia and ROS-regulated signaling
in controlling inflammatory processes in CF have not been
considered previously, but CF could alter oxidative status of
both cells and ASL through changes in oxygen use by the
airway epithelial cells (Fig. 1). Using O2-sensitive microelec-
trodes, Wortliszch et al. (194) found PO2 �150 mmHg in the
fluids 700–800 	m above the surface of cultured airway
epithelia. PO2 decreased in a curvilinear manner to values �50
mmHg as the electrodes reached the surface of non-CF cells,
and this hypoxia was even more pronounced in CF, with PO2

reaching 5–15 mmHg. It was hypothesized that the lower PO2

values in CF were due to increased Na� absorption that occurs
in CF cultures, leading to increased ATP consumption by the
Na�-K�-ATPases in the basolateral membranes of the cells,
resulting in increased O2 consumption (18, 123, 169). On the
basis of data in other cell types, hypoxia could activate MAPK
and/or NF-�B-signaling pathways leading to intrinsic inflam-
mation even in the absence of bacteria. Thus the hypoxia-
inducing factors-1 or HIF-2 of many cells are tightly controlled
by cellular oxygen tension (157, 188) through reactions con-
trolled by enzymes whose activities are dependent on [O2] (60,
93). When [O2] �5% (i.e., when PO2 
 38 mmHg, close to
values observed in the fluids above airway epithelial cells, Ref.
194), production of ROS by mitochondria increased (24, 25),
leading to activation of signaling pathways, including p38
MAPK (25), which has been implicated (e.g., 83 and 196) as an
integral downstream component of the MyD88-dependent
branch of the TLR pathway as well as other pathways likely
involved in the response to pathogens.

Invited Review

C221CFTR AND AIRWAY EPITHELIAL INNATE IMMUNITY

AJP-Cell Physiol • VOL 291 • AUGUST 2006 • www.ajpcell.org

 on M
ay 2, 2007 

ajpcell.physiology.org
D

ow
nloaded from

 

http://ajpcell.physiology.org


DOES HYPERINFLAMMATION RESULT INDIRECTLY FROM
CFTR’S ROLE IN CONTROLLING VOLUME, PH, AND GSH
OF ASL?

CFTR is expressed in both the glands (42) and the surface
epithelium (87) of the airways, and it is likely that both glands
and surface cells participate in controlling the ionic compo-
sition and volume of the ASL. The glands (8, 67), primarily
the acinar cells (73), appear to serve an important secretory
function, with CFTR conducting both Cl� and HCO3

� from
the cells into the lumen (64, 67, 89, 187, 191). In contrast,
the surface cells appear to be capable of both secretion and
absorption (182), with absorption dominating in the quies-
cent state in the absence of activation of cAMP/PKA sig-
naling. Secretion by both glands and surface cells is reduced
in CF (73).

Although the effects of the absence of CFTR on the com-
position and volume of the ASL in CF are still being debated
(see Refs. 29, 70, 165), it seems likely that the absence of
CFTR decreases volume of the ASL (73). This reduction in
volume of the ASL would be expected to increase the concen-
tration of other secreted products that may be proinflammatory,
even in the absence of bacterial infections. For example,
bradykinin and the purinergic agonists ATP, ADP, and aden-
osine activate inflammatory signaling (99, 106–108, 121, 144,
145), and these would all be expected to be present in increased
concentrations if the volume of the ASL is reduced in CF. In
addition, airway epithelial cells secrete small, but significant
amounts of proinflammatory cytokines into the ASL (179), and
the cells have apical receptors for these cytokines (179) that
could then activate or synergize with inflammatory signaling
triggered by bacteria. The magnitude of this proinflammatory,
concentrating effect of reducing ASL volume will depend on
the amounts of these inflammatory mediators that are secreted
into the lumen and the concentration dependence of the effects
of these agonists on epithelial inflammatory signaling, which
remain to be tested.

CFTR may be involved in maintaining redox status of the
ASL and mutations in CFTR could impair lung antioxidant
defenses, thereby increasing oxidative stress in the ASL in CF
airways (14, 47, 62, 151). WT-CFTR conducts reduced GSH
(see Ref. 101), a key redox buffer in cells. Cells containing
defective CFTR secrete less GSH than control cells containing
functional CFTR, and transfection with functional CFTR re-
stores GSH secretion (47). Furthermore, bronchioalveolar la-
vage fluids from CFTR-knockout mice had decreased concen-
trations of GSH and increased concentrations of thiobarbituric
acid-reactive substances and 8-hydroxy-2-deoxyguanosine,
two indicators of oxidative stress. However, tissue concentra-
tions of GSH were similar, and the activities of GSH reductase
and GSH peroxidase were increased, whereas the activity of
�-glutamyltransferase was unchanged (185), indicating that
changes in redox may not always occur in CF. It remains to be
determined whether increased ASL oxidation in CF results
directly from the absence of CFTR or indirectly from the
infiltration of leucocytes that produce ROS and also whether
increased ASL oxidation affects cytosolic redox. However, no
matter how the oxidative stress in CF originates, such oxida-
tion could potentially activate NF-�B (75) and p38 MAP
kinase (81, 98, 105) and hyperinflammatory responses (185)
(Fig. 2).

The acidity of ASL appears to increase in CF, and this could
similarly affect cellular signaling. The ASL of both normal and
CF airways is slightly more acidic than plasma (29, 69, 70, 91),
and nongastric H�-K�-ATPase (29), v-type H�-ATPase (67),
and Zn2�-sensitive H� conductance (45) in the apical mem-
branes of the epithelial cells may all contribute to this acidity.

Fig. 1. Increased Na� transport in cystic fibrosis (CF) causes hypoxia and
production of reactive oxygen species (ROS)? It has been proposed (see Ref.
158) that the absence of CFTR increases Na� absorption (shown by larger
arrow) through epithelial Na� channels (ENaC) (electroneutrality provided by
paracellular flux of Cl�), leading to increased ATP utilization by basolateral
Na�-K�-ATPase. The increased energy demand increases consumption of O2

[thereby depleting PO2 in the airway surface liquid (ASL)] and increased
production of ROS by mitochondria (shown as green in normal and red in CF).
ROS could activate NF-�B signaling and contribute to inflammation.

Fig. 2. ASL redox and/or pH controls inflammatory signaling in CF? Accord-
ing to this model, normal airway epithelial cells (left) conduct reduced
glutathione (GSH) and HCO3

� from the cell cytosol to the ASL through CF
transmembrane conductance regulator (CFTR), and these transport activities
are reduced in CF (left). GSH is in equilibrium with oxidized GSH (GSSH),
and HCO3

� and H� are in equilibrium according to the well known reaction
shown. Relative concentrations of GSH, GSSG, HCO3

�, and H� in normal and
CF are shown by the type sizes. CFTR thereby helps maintain a less oxidized
and less acidic ASL in normal airways than in CF. Reduced GSH and HCO3

�

transport in CF leads to increased oxidation and acidity of the ASL, which then
act on the cytosol to activate NF-�B and contributes to inflammatory signaling
in CF.
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CFTR conducts HCO3
� (64, 132), and both submucosal glands

(8, 67, 165, 177; also see Refs. 89 and 95) and surface
epithelium (29, 120) secrete HCO3

� into the ASL. The absence
of CFTR is expected to reduce HCO3

� secretion and because
H� secretion is likely to be unaffected in CF (29), this will
increase ASL acidity in CF (29, but also see Ref. 69). Because
extracellular pH can influence intracellular pH, increased ASL
acidity in CF could alter cell signaling leading to inflammation
(Fig. 2). Such an effect of luminal pH on epithelial signaling
has been observed in the CF mouse intestine (77): the duode-
num is abnormally more acidic in CF than in non-CF due to
decreased HCO3

� secretion through CFTR, and this increased
acidity in the intestinal lumen triggers the intestine to signal the
exocrine pancreas (likely through secretin) to increase HCO3

�

secretion. Normalizing duodenal pH of CF mice corrected
these effects.

Even in the absence of effects of reduced volume and
increased oxidation and/or acidification ASL on inflammatory
signaling, the altered ASL is expected to have secondary,
proinflammatory effects, e.g., reduced clearance and increased
accumulation of bacteria. For example, altered ASL may lead
to increased mucin cross-linking and viscosity and reduced
ciliary beating and mucociliary clearance (125). However, it
should be noted that mucociliary clearance in vivo is reduced
by �50% in CF (Ref. 11; see also Refs. 100 and 109), whereas
there is a much larger percentage increase in accumulation in
bacteria and subsequent activation of inflammation in CF. A
possible explanation for these apparently contradictory data is
that small reductions in mucociliary transport may accumulate
over time, leading to the bacterial accumulation characteristic
of the disease (see also Refs. 31 and 82).

INCREASED INTRACELLULAR Ca AND INFLAMMATORY
SIGNALING RESULTING FROM ER “STRESS” IN CF?

The role of Ca2� in inflammatory processes has been con-
troversial. Some studies showed that both intact P. aeruginosa
(107, 137) and flagellin (1, 108) increased cytosolic [Ca2�],
intracellular Ca2� (Cai), and activation of NF-�B or other
inflammatory signaling (1, 106–108, 137). In addition, in-
creased NF-�B signaling was reproduced by thapsigargin, the
Ca2�-ATPase/SERCA pump blocker, which increases Cai in
cells, and blocked by the cellular Ca2�-buffer BAPTA-AM
(137). Cai-elevating agonists like bradykinin and ATP also
increase cytokine expression and secretion (145, 147). How-
ever, there is also evidence that elevations of Cai are not
involved in activating innate immune responses triggered by P.
aeruginosa. Strains PAO1 and PAK activate NF-�B and IL-8
expression and secretion in JME/CF15 and Calu-3 cells with-
out affecting Cai (63, 68, 103). Flagellin also activates NF-�B
and IL8 secretion in Calu-3 and JME/CF15 cells without
affecting Cai (Z. Fu and T. Machen, unpublished observations),
and TLR signaling is not known to trigger increases in Cai in
other cell types (2). The discrepancies among studies which
found P. aeruginosa- or flagellin-induced increases in Cai and
those which did not may result from subtle differences in
bacterial preparations or epithelial cells, or in amounts of ATP
released into the extracellular fluid (which would trigger Ca2�

signaling: see Refs. 106–108) during addition of the bacteria to
the epithelial cells. Overall, it appears that elevating Cai by

treatment with purinergic agonists, bradykinin or thapsigargin
is sufficient to increase activation of NF-�B, but elevations in
Cai are not required to activate inflammatory signaling in
response to P. aeruginosa or flagellin in airway epithelia. Cai

may play an important role, though, because during P. aerugi-
nosa treatment, purinergic agonists elicit synergistic activation
of NF-�B mediated through increases in Cai (82).

A model linking mutation in CFTR to altered Cai signaling
and inflammation is that ER stress resulting from accumulation
of excessive amounts of misfolded �F508 CFTR in the ER
lumen increases Cai, perhaps due to increased Ca2� leakage
from the ER (190) (Fig. 3). The increased Cai might then
activate NF-�B (3), contributing to inflammation. �F508
CFTR (�70% of patients) is a processing mutant that exhibits
abnormal folding in the ER, leading to its retention (27, 191)
and subsequent removal and degradation by proteosomes (48).
The ER also stores Ca2�, and altered Ca2� handling by the ER
has been observed in cells treated with adenoviruses that lead
to ER accumulation of misfolded proteins (118, 119; also see
Ref. 122). ER stress can also activate NF-�B (122), and it has
been proposed that ER accumulation of �F508 CFTR leads to
activation of NF-�B in the absence of bacterial stimulus (190;
also see Ref. 7).

There are, however, inconsistencies with the ER stress:
hyperinflammation hypothesis. First, CFTR is expressed at
relatively low copy numbers (�5,000 channels in the apical
plasma membrane of epithelial cells, e.g., see Ref. 110), and,
though �F508CFTR is �100% degraded in the ER, WT-CFTR
is 75% degraded (only 25% reaches the plasma membrane)
(27, 85), and it seems unlikely that a 25% difference in ER
retention of this low abundance protein could trigger a stress
response. A similar argument is relevant for �F508CFTR/
WTCFTR heterozygotes, which exhibit normal Cai signaling
but likely experience ER retention of �F508CFTR that is not
much different from CF individuals. Second, measurements of
Cai that supported the ER stress-Cai hypothesis (190) were
based on small (20%) differences in fluo-3 fluorescence, which
is difficult to quantitate because it is a nonratiometric dye.
Measurements of Cai using the ratiometric dye fura-2 could
help settle this issue (see Ref. 113). Because recent experi-
ments on Calu-3 cells indicate that CFTR processing in cells
that express “normal,” as opposed to overexpressed, levels of
CFTR may be different (184), it would be useful to compare a
variety of CF vs. non-CF vs. CFTR-corrected cells.

INCREASED Cai RESULTING FROM HYPERPOLARIZED
MEMBRANE POTENTIALS IN CF?

Another model that could connect CFTR to Cai signaling
and inflammation is through effects of CFTR on cell membrane
potentials, which will alter the electrical driving force for Ca2�

entry into the cells from the ASL or serosal fluid (Fig. 4). An
early study (142) showed that Cai responses to histamine and
prostaglandin E1, but not to carbachol, were reduced in CF cell
lines compared with non-CF cells. In addition, adding the
purinergic agonists ATP or UTP to the apical surface of
primary airway epithelia elicited larger responses in CF than in
non-CF, though Cai responses to basolateral ATP or UTP were
similar in CF and non-CF cells (121). The different responses
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to apical vs. basolateral agonists appears (144–146) to result
from the fact that unidentified factors that accumulate in the
mucopurulent material of the CF ASL cause dramatic struc-
tural and functional changes of the airway epithelia. The ER
adjacent to the apical membranes expanded, leading to in-
creased capability for Ca2� storage and release, whereas ER
adjacent to the basolateral membrane was unaffected in CF
(144–146). The apical- and basolateral-localized ER operated
independently from each other due to the presence of surround-
ing mitochondria that prevented apical or basolateral Cai

changes from being propagated to the rest of the cell (146).
Thus responses to apical agonists were larger than responses to
basolateral agonists. These mucopurulent material-induced
changes in cell structure and Cai signaling were accompanied

by increases in production and release of IL-8, consistent with
a potential role for Cai in a hyperinflammatory response.

In addition to identifying a potential role for factors in the
CF ASL controlling epithelial cell structure and function, these
results raise the issue of the potential interactive roles of CFTR
and Cai in controlling or synergizing innate immune responses
of airway epithelia. Ca2� entry into airway epithelia will likely
be required to sustain elevated Cai over extended periods, and
a potential link among CFTR, Cai, and inflammation is through
CFTR’s effects on membrane potentials (Fig. 4). A relationship
among Ca2� entry, membrane voltage and inflammation was
discovered first in lymphocytes by Cahalan and colleagues (40,
114), who found that membrane voltage was regulating Ca2�

entry into the cells through voltage-insensitive Ca2� channels
(28) (store-operated or transient receptor potential, TRP) by
changes in electrical driving force on Ca2�. The resulting
oscillations in Cai controlled inflammatory signaling and gene
expression. Although there have been no studies of the effects
of membrane potential on gene expression in airway epithelia,
previous studies (44) in CFTR-expressing T84 intestinal epi-
thelial cells showed that changes in membrane potential caused
expected changes in Cai during agonist-induced activation of
Ca2� entry pathways. It therefore seems possible that differ-
ences in apical and/or basolateral membrane potentials (Vap

and/or Vbl) in CF vs. non-CF airway epithelia could lead to
differences in apical vs. basolateral Ca2� entry and Cai signal-
ing and, consequently, increased activation of NF-�B (see Ref.
37) and innate host responses in CF vs. non-CF airway epithe-
lia. These proposed effects of membrane potential on Ca2�

entry into CF and non-CF airway epithelial cells remain to be
tested.

Vap and Vbl are determined by the dominant ion conduc-
tances (i.e., to Na�, K�, and Cl�), the respective ion concen-
tration gradients across the membranes, and the transepithelial
resistance. Microelectrode measurements of Vap and Vbl in
intact epithelial sheets of CF and non-CF human airway and
sweat duct epithelia, both of which express apical CFTR and
ENaC, have been summarized in Table 1. Data for other

Fig. 3. Endoplasmic reticulum (ER) stress in CF increases cytosolic [Ca2�]?
Retention and degradation of �F508CFTR in the ER and associated protea-
somes (not shown) in CF might alter intracellular Ca2� (Cai) through effects
on ER Ca2� accumulation by ATPase (SERCA) or leak (inositol trisphosphate
receptor, IP3R). Increased Cai might then activate NF-�B and contribute to
inflammation in CF.

Fig. 4. Cell voltage hyperpolarization in CF increase cytosolic [Ca2�]? Loss
of CFTR leads to a hyperpolarization of the basolateral membrane potential of
airway epithelial cells from about �45 to �60 mV, and this hyperpolarization
is expected to increase Ca2� entry into the cells through voltage-independent
calcium release-activated Ca2� channels (CRAC) (green), resulting in in-
creased Cai and activation of NF-�B. According to this model, differences in
Ca2� entry and Cai (and therefore in NF-�B activation) between normal and
CF would be most apparent manifest during conditions in which CFTR and
CRAC channels were both active. In this condition, CFTR would have its most
profound effect on membrane voltage, and Ca2� entry pathways will be
operating.

Table 1. Vap and Vbl in non-CF and CF epithelia

Vap, mV Vbl, mV Reference No.

Nasal (human) 192, 193
Non-CF �23 �38
CF �16 �52

Sweat duct (human) 139
Non-CF �25 �35
CF �26 �50

Tracheal (bovine) 182
Activated CFTR (�fsk) �12 �57
Inactive CFTR (�fsk) �2 �72

Airway Calu-3 Line (human) 173
Activated CFTR (�fsk) �22 �44
Inactive CFTR (�fsk) �48 �60

Mammary Line (mouse) 15
Activated CFTR (�fsk) �47 �57
Block CFTR (�fsk�NPPB) �61 �67

CF, cystic fibrosis; CFTR, CF transmembrane conductance regulator; Vap,
apical membrane potential; Vbl, basolateral membrane potential. The table
summarized membrane potentials measured across the apical or basolateral
membranes of CFTR-expressing epithelia. Vap is referenced cell vs. apical
solution and Vbl is referenced cell vs. basolateral solution. Data for human
nasal epithelia were average values taken from Refs. 192 and 193.
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epithelia, in which there were comparisons of cells where
CFTR was either inactive or active have also been included
(Table 1). When CFTR is inactive (i.e., in unstimulated non-CF
epithelia or in CF epithelia), Vap and Vbl are largely determined
by the activity of apical ENaC, which depolarizes both mem-
branes, and basolateral K� conductances, which hyperpolarize
both membranes. Expression and activation of CFTR in the
apical membrane is expected to move Vap toward the Cl�

equilibrium potential, which is approximately �22 mV (as-
suming an intracellular Cl� activity of 43 mM, see Ref. 173).
The data in Table 1 show that activated CFTR hyperpolarizes
Vap in nasal epithelia, sweat duct, and bovine trachea, tissues
that have depolarized Vap (likely owing to ENaC activity) in
the basal state. In Calu-3 and mouse mammary epithelium,
which express little apical ENaC and have hyperpolarized Vap

in the basal state, activation of CFTR depolarized both Vap and
Vbl (Table 1). Thus reduction of apical Cl� permeability
through the loss of functional CFTR in CF either hyperpolar-
izes or depolarizes Vap but consistently hyperpolarizes Vbl

(Table 1). It is therefore predicted that Ca2� entry across the
basolateral membrane will increase in CF (see Refs. 44 and
154), especially during treatments with agonists that activate
Ca2� entry channels in the basolateral membrane. Although
the CF-dependent changes in Vbl appear small (Table 1), they
could be important if, as preliminary data suggest (103), Cai

plays an important synergistic role in flagellin-TLR-NF-�B
signaling. Synergistic interactions among NF-�B and Cai-
signaling pathways could become especially important during
extended infections because inflammatory signaling may alter
expression of gene products, which will affect Cai signaling,
giving rise to a positive feedback situation of inflammation
enhancing inflammation.

In summary, although there is an exaggerated innate im-
mune response in CF airways, available data indicate there is
likely to be little difference in intrinsic inflammatory properties
between normal and CF airway epithelia. However, this issue
may not be resolved until experiments have been performed
with properly paired CF and CFTR-corrected cells or CFTR-
expressing cells treated with a specific CFTR blocker (102,
110, 172) during exposure to P. aeruginosa and to agonists that
activate CFTR. The most likely models to explain altered
inflammatory signaling in CF involve the effects of the absence
of CFTR’s anion channel function on ASL composition and
volume, which secondarily alter cellular signaling. A smaller
ASL volume in CF would concentrate proinflammatory factors
like ATP, bradykinin, and epithelial-derived cytokines that
could activate or synergize with TLR-MAPK-NF-�B signal-
ing. An acidic and/or oxidized ASL in CF resulting from
reduced secretion of HCO3

� or reduced GSH could also affect
cell pH and/or redox, thereby altering cell signaling. Cytosolic
redox might also be altered by increased O2 consumption by
CF cells, and the resulting hypoxia and altered redox could
regulate signaling. The absence of CFTR hyperpolarizes Vbl,
and this effect may increase Ca2� entry into the cells. Increases
in Cai alone appear to be sufficient to weakly activate NF-�B,
but larger Cai-induced activations of NF-�B occur when the
cells are simultaneously exposed to flagellin. The hyperinflam-
matory effect of CF on Cai and NF-�B signaling would be
most prominently expressed during exposure to both P. aerugi-
nosa and also endocrine, paracrine or nervous agonists that
activate Ca2� signaling in the airway epithelia.
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