Spatial distribution and quantitation of free luminal [Ca] within the InsP₃-sensitive internal store of individual BHK-21 cells: ion dependence of InsP₃-induced Ca release and reloading

ALDEBARAN M. HOFER,¹ WOLF-RÜDIGER SCHLUE,³ SILVANA CURCI,³AND TERRY E. MACHEN⁴

Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, University of California, Berkeley, California 94720, USA

ABSTRACT Free [Ca] within organelles of permeabilized BHK-21 cells was measured using ratio imaging of compartmentalized mag-fura-2. In BHK-21 cells, this dye monitors free [Ca] in principally one type of ATP-dependent Ca-sequestering organelle in which intrastore Ca was released uniformly and entirely by 100 nM thapsigargin or removal of ATP or Ca from the bath, and was reduced by 85% upon treatment with a supramaximal dose of $InsP_3$ (6 μ M). Examination of the spatial distribution of InsP₃-sensitive Ca stores showed that InsP₃ released Ca throughout all regions of the cell, although we often noted a perinuclear region (which we speculate may correspond to the Golgi apparatus) with reduced responsiveness to InsP₃. InsP₃-induced changes of intraluminal Mg could not be detected. Cyclic ADPribose, rvanodine, caffeine, mitochondrial inhibitors, and GTP, agents known to influence intraorganellar Ca sequestration in other cell types, were all without effect on the mag-fura-2 ratio. In situ calibration of the mag-fura-2 ratio with Ca ionophores revealed that the average free intraorganellar [Ca] was initially 188 \pm 21 μ M in the presence of 170 nM free Ca and 3 mM ATP, and was reduced to $25 \pm 5 \,\mu$ M upon stimulation with 6 μ M InsP₃. The ionic dependence of the release and reloading process was also investigated. The presence of either K, Na, or Cl could consistently support both InsP₃-induced release and the refilling of stores with Ca, but physiological concentrations of HCO₃ were effective in sustaining the response in only 24% of cells examined.—Hofer, A. M., Schlue, W.-R., Curci, S., Machen, T. E. Spatial distribution and quantitation of free luminal [Ca] within the InsP₃-sensitive internal store of individual BHK-21 cells: ion dependence of InsP₃-induced Ca release and reloading. FASEB J. 9, 788-798 (1995)

Key Words: ratio imaging • thapsigargin • Ca ionophores

Virtually all eukaryotic cells possess subcellular stores of compartmentalized Ca that are available for mobilization

into the cytoplasm during agonist-stimulated Ca signaling events. Ca stores that can be released by inositol 1,4,5trisphosphate $(InsP_3)^5$ are nearly ubiquitous, but other types of releasable Ca pools are known to coexist in the same cell type, for example, stores that are sensitive to ryanodine or caffeine, cyclic ADP ribose, or GTP (see, for example, refs 1, 2 for review). The particular complement of Ca-sequestering pools present depends on the cell type.

der Bre

We have developed a fluorescence technique that allows direct measurement of free [Ca] within the InsP₃-releasable pool using the Ca indicator mag-fura-2 (3, 4). This probe becomes compartmentalized in intracellular organelles when loaded as the acetoxymethyl ester derivative, where, by virtue of its relatively high K_d for Ca (53 μ M; refs 5, 6) it reports changes in free [Ca] in this space. Our previous studies were performed on gastric epithelilal cells, which have a relatively complex collection of compartments capable of ATP-dependent Ca accumulation as measured by this probe. In addition to the InsP₃-sensitive store, gastric cells were shown to have an unusually robust mitochondrial Ca uptake activity, as well as a Ca-sequestering pool that was determined to be distinct from either the InsP₃-sensitive pool or the mitochondrial store. A disadvantage of using these cells is that the presence of multiple pools complicates the quantitation of free [Ca] in any one given pool, as described in detail in ref 4.

⁵Abbreviations: InsP₃, inositol 1,4,5-trisphosphate; SL-O, streptolysin-O; NMG, *N*-methyl glucamine.

¹Present address: II. Physiologisches Inst., Universität des Saarlandes, D-66421, Homberg/Saar, Germany.

²Present address: Inst. fuür Zoologie, Universität Düsseldorf, D-40255, Düsseldorf, Germany.

³Present address: Istituto di Fisiologia Generale, Universitá degli Studi di Bari, 70126 Bari, Italy.

⁴To whom correspondence and reprint requests should be addressed, at: Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, 231 LSA, University of California, Berkeley, CA 94720, USA.

A previous paper concluded from measurements on compartmentalized fura-2 that Ca was released uniformly from the internal stores by InsP₃, but quantitation of free [Ca] changes was difficult due to the low K_d of fura-2 (7). Moreover, there was no consideration of the issue of the dye becoming compartmentalized in multiple pools, with ensuing complications in interpreting the data. Thus, precise determination of the intraluminal free [Ca] of the internal store has not been possible before, but this value is of potential interest to many investigators, e.g., for understanding the kinetics of the InsP₃-induced release and subsequent refilling of stores. Furthermore, many luminal enzymes and resident proteins of organelles bind Ca, and in some cases a regulatory role for Ca binding has been suggested. For instance, in the endoplasmic reticulum BiP, protein disulfide isomerase, reticulocalbin, and reticuloplasmins are luminal Ca binding proteins, the location of which may coincide with the $InsP_3$ -sensitive store (8–10). It would be interesting to know whether the binding affinities for Ca lie within a range that might suggest regulation by [Ca] changes occurring during the InsP₃-induced release.

We report here on a fibroblastic cell type, the BHK-21 cell line, that appears to have essentially one functional type of store capable of accumulating Ca in an ATP-dependent manner as measured by the mag-fura-2 technique. The fact that mag-fura-2 monitors [Ca] in mainly one pool in this cell type greatly simplifies the interpretation of data and permits the estimation of the amount of Ca released during InsP₃ stimulation. Furthermore, the flattened morphology of these cells makes it possible to examine the spatial distribution of InsP₃-responsive stores using imaging techniques and conventional optics.

We also investigated the ionic dependence of InsP₃-induced Ca release and reloading in BHK-21 cells. Because Ca pumping by the Ca-ATPase is an electrogenic process, it is expected that refilling the internal store will require the movement of a counterion. Similarly, a counterion would also be expected to accompany Ca during the massive release of Ca from the internal store during agonist stimulation. In fact, it has been established in a number of cell types that a permeant ion must be present in order to elicit a response, but the particular ionic requirements for this process and the pharmacological characteristics of these parallel pathways appear to vary depending on cell type. For example, it has been reported that Cl is required for the refilling of ATP-dependent Ca pools in pancreatic and gastric cells (3, 11). The coupling of Ca fluxes to univalent cations, with particular emphasis on the role of K in the release process, has also been examined in liver, brain, and platelets (12-15). To our knowledge, the participation of HCO₃ ions has not been investigated. Here we report that Cl, Na, and K all participate in the release and reloading process after InsP₃ stimulation in BHK-21 cells. Physiological concentrations of HCO₃ only occasionally were able to support the response.

- RESEARCH COMMUNICATION

MATERIALS AND METHODS

Cell culture, dye loading, and permeabilization

BHK-21 cells were grown in Eagle's MEM with Earle's BSS containing 10% fetal calf serum and 10% Difco tryptose phosphate broth, and were maintained in a humidified incubator at 37°C in the presence of 5% CO2/95% air. Cells were plated onto glass coverslips and used the following day for ratio imaging experiments. For dye loading, cells were incubated with 5 mM mag-fura-2-AM in tissue culture medium at 37°C for 20 min, after which they were placed for 1 min into cold permeabilization buffer (4°C) containing reduced streptolysin-O (SL-O). In some experiments cells were permeabilized at 37°C with 1 mM digitonin as described previously (3, 4). Both permeabilization protocols produced equivalent results. Coverslips were mounted immediately into a metal flow-through perfusion chamber that has been described previously in more detail (16) and perfused continuously with "intracellular buffer" at 37°C. SL-O binds to the plasma membrane at 4°C, but is unable to form the perforating pore complex in the plasma membrane until the temperature is raised to 37°C (17). This procedure permits selective permeabilization of the plasma membrane, allowing cytosolic dye to leak out but leaving compartmentalized mag-fura-2 behind in intact organelles.

Ratio imaging experiments

After permeabilization with SL-O or digitonin, the cells were then ready for ratio imaging measurements, using a system described previously in more detail (16). The chamber containing the coverslip was fitted onto the heated stage of a Zeiss IM 35 microscope and cells were observed with a 40X objective. Because cells were perfused continuously with intracellular buffer (the turnover time of the perfusion chamber was approximately 2 s) both cytosolic mag-fura-2 and and dye that might leak from subcellular compartments were eliminated. Cells were excited alternately at 350 nm and 385 nm, and video images of the resulting fluorescence emission from each excitation wavelength (collected at 510 nm) were recorded by a silicon-intensified target camera (model 66, Dage-MTI, Michigan City, Ind.). Raw images were forwarded to a Gould FD5000 image processor (Cleveland, Ohio) that produced a backgroundcorrected pseudocolor image of the 350/385 ratio throughout the cell. Images were generally acquired every 10 s. The 350/385 ratio is proportional to the free [Ca] or [Mg] in subcellular compartments resistant to permeabilization. The records shown depict the averaged response of 1-10 individual cells in a single experiment; "n" refers to the number of independent experimental runs. Errors are ± SEM.

Solutions and materials

Permeabilization buffer contained (in mM): 125 KCl, 25 NaCl, 10 HEPES, pH 7.40, and 1.5 units/ml reduced streptolysin-O (Murex Diagnostics Limited, Dartford, England). Intracellular buffer contained (in mM): 125 KCl, 25 NaCl, 10 HEPES, 3 Na₂ATP (unless otherwise stated), 0.1 MgCl₂, pH 7.20, with free [Ca] clamped to 170 nM using CaEGTA buffers that were prepared by methods described previously (18). Calibration solutions (as in Fig. 4) had the same composition as the intracellular buffer, except that ATP and EGTA were omitted, and the solutions were supplemented with the indicated amount of CaCl₂ and the Ca/Mg ionophore 4-Br-A23187. Zero Ca calibration buffer contained 0.8 mM EGTA. The free [Ca] already present in our nominally Ca-free solution was estimated to be approximately 5 µM. HCO3e--containing solutions (as in Fig. 5B) were prepared with 25 mM added NaHCO₃ (NaCl replacement) and were bubbled with 5% CO₂/95% air. For experiments using Na and/or K-free solutions (as in Figs. 5C, D), N-methyl glucamine (NMG) chloride or choline chloride were used as replacements, and the tris-salt of ATP was used. For Cl-free solutions (as used in Fig. 5A), the corresponding gluconate salt was used. The sucrose-based intracellular solutions used in experiments of the type shown in Fig. 6A contained (in mM): 300 sucrose, 10 HEPES, 3 Tris ATP, 0.1 MgCl₂, pH 7.20, and 170 nM free Ca. Iso-osmolar replacement of sucrose with the indicated amounts of K gluconate, Na gluconate, or NMG Cl were made for experi-

ments depicted in Figs. 6A, 6B. HCO₃-containing sucrose buffer used in Fig. 6C was prepared by adding 20 mM NMG free base to the sucrose buffer and bubbling with either 95% O₂/5% CO₂ or 95% air/5% CO₂ gas mixture until a stable pH of 7.20–7.30 was achieved. We noted better results with the CO₂/air mixture than with the CO₂/O₂ mixture, and speculate that this may arise from accelerated photobleaching of the fluorophore in the presence of O₂. For some experiments using HCO₃-containing solutions, BAPTA was used instead of EGTA (which is highly pH-sensitive) to buffer free [Ca] to 170 nM. Cyclic ADP-ribose was a generous gift from H. C. Lee, University of Minnesota. Thapsigargin was from L.C. Services (Woburn, Mass.). All other reagents were obtained from Sigma (St. Louis, Mo.) unless otherwise stated.

RESULTS

Spatial distribution of InsP3-responsive Ca stores

One advantage of measuring [Ca] changes in internal stores directly using the mag-fura-2 technique (as opposed to measuring reciprocal changes in the cytoplasm) is that there is the potential to investigate the spatial localization of InsP₃-sensitive pools using imaging techniques. The flattened morphology of BHK cells makes them particularly amenable to this type of experimentation. Figure 1A depicts a pseudocolor image of a typical BHK-21 cell that was loaded with mag-fura-2-AM and then permeabilized with SL-O in intracellular buffer. Cytosolic dye was eliminated as a consequence of plasma membrane permeabilization, leaving behind compartmentalized mag-fura-2. In subsequent sections of this paper we demonstrate that the magfura-2 ratio is a measure of intraluminal free [Ca] with minimal interference from Mg under our experimental conditions. In the presence of 3 mm ATP and 170 nm free Ca, internal stores were loaded with Ca as indicated by the relatively high ratio. The darkened central area of the image corresponded to the nucleus, which was devoid of organelles and thus did not accumulate mag-fura-2 in the permeabilized cell. It was noted that there were subtle variations in the ratio throughout the resting cell, reflecting an inho-

Figure 1. a) Pseudocolor ratio image of streptolysin O-permeabilized BHK-21 cell bathed in intracellular buffer containing ATP and 170 nm free Ca. Cytosolic dye has been washed out leaving mag-fura-2 entrapped in organelles. The relatively high ratio (corresponding to the magenta color) indicates that the free intraluminal [Ca] is elevated in all areas of the cell. b) Same cell 130 s after stimulation with 6 µM InsP₃. The mag-fura-2 ratio decreases throughout the cell as indicated by the blue or yellow color, although not to the same extent in all regions. We often (in about 30% of cells) noticed a perinuclear region with attenuated responsivenes to InsP₃ (yellow color) that was especially prominent in this particular cell. c) The mag-fura-2 ratio was collected from selected areas of the cell (marked "(A)" and "(B)" in the micrograph B corresponding to peripheral (A) and perinuclear (B) zones and plotted with respect to time. Zone (B) exhibits a smaller decrement in the ratio upon InsP₃ treatment than zone (A). Shown for comparison is the averaged response throughout the entire cell ("whole cell").

mogeneous distribution of Ca in subcellular compartments. These variations disappeared when cells were calibrated with ionophores (as in Fig. 4), indicating that the difference in ratio was due to an actual difference in free [Ca], and was not a consequence of aberrant behavior of mag-fura-2 in differing environments. As seen in Fig. 1*B*, treatment with 6 μ M InsP₃ (a supramaximal dose) resulted in a rapid decrease in the ratio in all portions of the cell, indicating that InsP₃-responsive stores are distributed throughout the cell, and are not localized to discrete regions in this cell type.

We often observed a perinuclear region that was slightly less responsive to $InsP_3$ than the periphery of the cell. Such a region was conspicuous in approximately 30% of cells and was also apparent in the cell depicted in Fig. 1B. Figure 1C compares the ratio change upon $InsP_3$ stimulation in selected regions near the nucleus, at the periphery, and an average of the entire cell. The magnitude of the $InsP_3$ -induced decrease in these perinuclear "hotspots" was 75 \pm 6% of that observed in the remainder of the cell (n = 7). This zone of reduced responsiveness typically constituted a small proportion of the total area and, as such, did not greatly influence the overall ratio change measured in the whole cell. Our estimate of the free [Ca] within the InsP₃-sensitive pool is not affected to a large extent by these unresponsive zones, as discussed further below.

Treatment with 100 nM thapsigargin caused an even greater reduction in the ratio than stimulation with 6 μ M InsP₃; this decrease in the ratio was observed in all portions of the cell, both at the periphery and in the perinuclear region (not shown).

Characterization of pools in BHK-21 cells: evidence for one type of ATP-dependent Ca-sequestering pool sensitive to thapsigargin

We used a pharmacological approach to investigate whether there were additional Ca stores present in BHK-21 besides

the InsP₃-sensitive pool. It was also essential to validate that our technique provided a measure of intraluminal free [Ca] for this cell type. Because mag-fura-2 is also sensitive to changes in free [Mg] (K_d for Mg = 1.5 mM, ref 6), it was necessary to determine the contribution of intrastore [Mg], if any, to the measured ratio.

Figure 2A shows the response of a permeabilized BHK cell to 6 μ M InsP₃. Maximal release was achieved within 64 \pm 5 s (data from 15 records), and the effect of InsP₃ was blocked by 100mg/ml heparin (n = 2; not shown), a competitive antagonist of InsP₃ binding to its receptor (19). Rapid refilling occurred upon removal of InsP₃. Subsequent treatment with 100 nM thapsigargin, a specific blocker of the Ca-ATPase in the internal store membrane (20), resulted in a relatively slow decline in the mag-fura-2 ratio (reflecting a passive leak from the store) that typically required 19 \pm 2 min (n = 6) for completion. Cyclopiazonic acid, a reversible blocker of the ATPase (21), had a similar action (not shown; n = 4). As seen in the trace, InsP₃ was ineffective in eliciting any response after 20 min in the presence of thapsigargin (n = 5), indicating that the InsP₃sensitive pool had been completely emptied. Removal of ATP from the bathing solution (which usually produced a relatively slow decline in the ratio in control cells) also had no further effect on the mag-fura-2 ratio in thapsigargin treated cells (n = 7).

We interpreted the ratio changes seen in Fig. 2A as reflecting movements of sequestered Ca into and out of the internal store. These experiments indicated the presence of one functional type of ATP-dependent Ca pool in BHK-21 cells that was sensitive to thapsigargin and cyclopiazonic acid. However, it was important to understand whether there were additional releasable Ca stores in these cells and to what extent intraluminal [Mg] might be influencing our measurements.

In the intact cell under physiological conditions, cytosolic free [Mg] has been reported to be in the range of 0.5 to 1.0 mM (22). The intracellular buffer used in our experiments included 0.1mM MgCl₂, which was necessary because the thapsigargin-sensitive Ca-ATPase uses Mg-ATP

Figure 3. A) Permeabilized cells in intracellular buffer initially containing 0.1 mM added Mg. Intracellular buffers with 5 mM and 10 mM added Mg had minor effects on the mag-fura-2 ratio. All solutions contain 3 mM ATP so the actual free [Mg] is reduced (i.e., the buffer with 10 mM added Mg + 3 mM ATP contains approximately 7 μ M free Mg). B) Measurable changes in [Mg] do not occur during InsP₃ stimulation. After depletion of Ca from internal stores (by pretreatment in Ca-free solutions), [Mg] was elevated to 5 μ M, resulting in a slight increase in the ratio. Subsequent challenge with InsP₃ (6 mM) produced no detectable change in the ratio. Readdition of Ca (170 nM) into the medium resulted in refilling of stores. C) Control experiment demonstrates that it is possible to evoke InsP₃-induced Ca release in intracellular buffer with zero Ca (ECTA only). Response to 6 μ M InsP₃ in normal intracellular buffer with 170 nM Ca, followed by brief perfusion with Ca free solution. InsP₃ is still able to elicit a response although the rate of release is significantly slower.

В

(23, 24). Because ATP is an effective chelator of Mg, the free [Mg] in our solutions was estimated to be only 1.7 μ M in the presence of 3 mM ATP. Removal of 0.1 mM Mg from the bath elicited a slow decrease in the mag-fura-2 ratio with a time course that was similar to that observed when ATP was omitted from the bath (not shown). We interpreted this change as a slow leak of Ca resulting from the loss of pump activity by the Mg-dependent Ca-ATPase in the internal store (n = 3; not shown). As seen in Fig. 2B, removal of Ca from the intracellular buffer (but with ATP and 0.1 mM Mg still present) also elicited a slow decline in the ratio that required 21 ± 3 min for completion. After this time, withdrawal of ATP or treatment with the Ca, Mg ionophore 4-Br-A23187 (10 mM) did not result in any further decrease in the ratio (n = 4).

When cells were pretreated with thapsigargin (which is irreversible) and then perfused with a Ca free solution in the absence or presence of 4-Br-A23187 (10 mM), as depicted in Fig. 2C, there was no additional change in the ratio (n = 4). Because 4-Br-A23187 carries both Ca and Mg, this result also demonstrates that under our experimental conditions there is no detectable residual pool of Ca or Mg in these cells in the absence of ATP (or after thapsigargin treatment). These results are consistent with the existence of one major type of Ca-sequestering compartment that requires ATP for filling and that can be depleted entirely by thapsigargin.

We were interested to know whether the mag-fura-2 technique could also be used to study Mg transport in the InsP₃sensitive store. However, the following experiments suggest that the permeability of internal store membranes to Mg is low compared to that for Ca, and that there is no measurable Mg flux through the InsP₃ receptor. First we examined the effect of altering [Mg] in the intracellular solution under resting conditions where internal stores of Ca were full, i.e., in the presence of 170 nM free Ca and 3 mM ATP. As seen in **Fig. 3***A*, switching between intracellular buffers containing 0.1, 5.0, or 10.0 mM added Mg had little effect on the mag-fura-2 ratio of resting cells.

To test whether fluxes of Mg were occurring during InsP₃stimulation, we first removed Ca from the bathing solution (still in the presence of 0.1 mM added Mg and ATP), which resulted in a large decrease in the mag-fura-2 ratio (Fig. 3B). Addition of 5 mM Mg had minimal effects on the ratio, again suggesting that the permeability of the store to Mg was relatively small. Subsequent treatment with InsP₃ in the absence of Ca (but in the presence of 3 mM ATP and 5 mM Mg) had no effect on the ratio. However, because the InsP₃ receptor is known to be modulated by cytosolic [Ca] such that Ca release is diminished in the absence of Ca (25, 26), we were concerned that the protocol used here might not have revealed Mg movements due to inactivation of the InsP₃ receptor. As seen in Fig. 3C, internal stores of BHK-21 cells were capable of responding to InsP₃ in the absence of cytosolic Ca, although the response (determined in the same cells) was on average 4.2 ± 0.7 (n = 6) times slower than was observed when the intracellular buffer contained 170 nM free Ca.

Based on the experiments depicted in Figs. 2B, C and Figs. 3A-C, it appears unlikely that intraluminal [Mg] changes interfere with the assessment of InsP₃-induced Ca release under our experimental conditions. However, because many of our experiments were conducted in the absence of Ca, we cannot exclude entirely the possibility that there is a mechanism for Mg uptake that requires Ca for its operation.

Testing for the presence of other types of Ca stores

In previous studies of gastric epithelial cells using the magfura-2 technique we noted a relatively large component of ATP-dependent Ca-sequestration, which based on the actions of mitochondrial inhibitors was ascribed to mitochondrial uptake (4). In contrast, these inhibitors had no effect in permeabilized BHK-21 cells. As seen in Fig. 2A, 1 µM ruthenium red (a potent blocker of the mitochondrial Ca uniporter; ref 27) elicited no change in the mag-fura-2 ratio (n = 11). Other agents known to release Ca from mitochondrial stores (27) were also tested: $1 \mu M$ FCCP (n = 4), 10 μ M valinomycin (n = 4), 10 μ M oligomycin + 5 mM azide (n = 6) were all without effect (not shown). Thus, there is no detectable contribution of intramitochondrial Ca to the mag-fura-2 ratio in BHK-21 cells. This result was also anticipated based on the experiments shown in Fig. 2C, where it was demonstrated that ionophores were unable to release any additional Ca from thapsigargin-insensitive stores. It is unclear what accounts for the difference between gastric cells and BHK-21 cells with respect to mitochondrial Ca uptake. It is possible that BHK-21 cells simply possess very few mitochondria compared to gastric cells, or perhaps these mitochondria do not sequester detectable amounts of Ca or dye.

To define the nature of Ca stores within these cells more fully, we also tested other agents that have been reported to influence Ca release in other cell types. Many cell types possess Ca pools sensitive to caffeine and ryanodine (2, 28, 29), which are thought to participate in the phenomenon of calcium-induced-calcium release. However, neither caffeine (10 mM; n = 5) nor ryanodine (1 μ M; n = 3) had any effect in BHK-21 cells. Cyclic ADP-ribose, which has been shown to be a potent Ca releaser in a variety of cell types (30), was similarly unable to elicit any response in BHK cells when used at a dose of 2 μ M (n = 3). In some permeabilized cell preparations, GTP releases Ca and/or modulates the size of the InsP₃-releasable store (31, 32); however, these effects of GTP (used at a concentration of 100 μ M) were not observed in BHK cells (n = 4).

It appears from these data that BHK-21 cells possess a simple complement of Ca sequestering compartments when compared to other cell types such as gastric epithelial cells, pancreatic acinar cells, or PC12 cells (4, 28, 29, 33, 34). Our findings demonstrate that mag-fura-2 monitors free [Ca] in a subcellular compartment in which Ca could be released entirely by thapsigargin and reduced by approximately 85% with 6 mM InsP₃.

Calibration of intrastore free [Ca]

Having established the presence of one ATP-dependent Casequestering compartment sensitive to thapsigargin and having excluded interference by Mg, we next performed in situ calibrations of store [Ca] using the ionophore 4-Br-A23187 (10 µM) and calibration solutions containing different amounts of Ca. Shown in Fig. 4 is the release of Ca from internal stores in response to 6 mM InsP₃, and corresponding refilling of stores after InsP₃ washout. Cells were then treated with ionophore and calibration solutions containing 300, 200, 100, 50, or 0 µM added Ca. The inset summarizes data from 15 such records, and relates the mag-fura-2 ratio to the added [Ca] for this particular series of experiments. Some inconsistency in the starting ratio and size of the InsP₃-induced transient was observed from day to day, so that this calibration curve cannot be applied to all of the records presented in this report. Calibrations were performed in the presence and absence of 0.1 mM Mg, with no observable difference. Because mag-fura-2 is monitoring free [Ca] within the store, we converted the total [Ca] in our buffer to free [Ca] assuming an activity coefficient of 0.88. We observed some variability in the size of the response from cell to cell, but on average, treatment with $6 \, \mu M \, Ins P_3$ caused the resting intraluminal free [Ca] to decrease from $188 \pm 21 \ \mu\text{M}$ to $25 \pm 5 \ \mu\text{M}$. In this estimate we assumed that we monitored [Ca] changes from a single contiguous pool of Ca. Another possible scenario is that Ca is liberated entirely from one subset of Ca-sequestering compartments, whereas other physically separated domains are unresponsive. However, because the InsP3-induced release consti-

Figure 4. Calibration of InsP₃-induced Ca release from internal stores. Cells were first treated with 6 mM InsP₃ (a supramaximal dose) to establish the magnitude of the response, followed by perfusion with calibration solutions containing 300, 200, 100, or 50 μ M added Ca (no EGTA) and 10 μ M 4-Br-A23187. The zero Ca calibration solution contained 0.8 mM ECTA. The inset summarizes data from 15 records relating the mag-fura-2 ratio to the [Ca]. Errors are \pm SEM.

tuted such a large proportion of the total sequestered Ca (approximately 85%), the error in our estimate will be minimized if nonresponding pools are present.

Ionic dependence of Ca release and reloading

Both the efflux of Ca through the InsP₃ receptor during stimulation and the refilling of internal stores are electrogenic processes, and thus a counterion must accompany the movement of Ca in order to neutralize charge. The following experiments were designed to test the ionic requirements for the release and reloading of Ca in BHK cells by comparing the response to InsP₃ in solutions of varying ionic composition. Figure 5A shows a control stimulation with InsP₃ in normal intracellular buffer containing Cl (total [Cl] = 150 mM), followed by InsP₃-induced release and reloading of internal stores in the absence of Cl (gluconate replacement; trace typical of four similar records). Cl-free solutions had no significant effect on either the efflux of Ca from stores or the refilling phase after InsP3 washout, indicating that there was no absolute requirement for Cl during these events. We also compared the InsP3 response in HCO₃-containing solutions (bubbled with 5% CO_2) with that in nominally HCO₃-free conditions and also observed no significant difference (Fig. 5B, n = 5). Similarly, the InsP₃ response was unaltered when experiments were conducted in Cl-free solutions (gluconate replacement) that contained HCO₃ (20 mM) as the major permeant anion (n= 4; not shown).

Because omission of Cl had no obvious effect on the InsP₃ response it was inferred that cations might play a role in the release and reloading process, so we next performed experiments in Na-free solutions (Fig. 5C). There was no discernable difference in the InsP₃-induced discharge in the presence of 31 mM Na or in the absence of Na ions (n = 4). However, as seen in Fig. 5D, there was a marked attenuation of the response when cells were perfused with an intracellular solution deficient in K, where the replacement cation was either NMG (n = 7) or choline (n = 4). On average the magnitude of the InsP₃-induced ratio change in K-free solutions was 46±4% of that observed under control conditions in K-containing medium. In intracellular solution in which Na and K were both removed (NMG or choline replacement), InsP₃ elicited a decrease in ratio that was similar to that obtained under K-free conditions ($45\pm7\%$ of control; n = 4, not shown). No difference in the response was observed when Cs was used as the replacement for K (n = 6; not shown).

From the data presented above we concluded that the release and reloading process did not depend entirely on any one ion, although because there was a considerable attenuation in the absence of K this ion was likely playing the most important role. To assess more directly whether Cl, HCO₃, K, or Na were serving as counterions, we used sucrose-based solutions in which only one species of permeant ion was added at a time. In a nominally ion-free intracellular solution containing only 300 mM sucrose, 3 mM Tris-ATP, 170 nM free Ca (using Ca-EGTA buffers),

and 0.1 mM MgCl₂, there was no response to InsP₃ (Fig. 6A; n = 14). However, when 60 mM K was subsequently introduced (as K-gluconate), the InsP₃ response was restored (n = 22). As illustrated in Fig. 6B, addition of 45 mM Na-gluconate was also sufficient to initiate a partial release and reloading of sequestered Ca (n = 7). Shown for comparison is the result of InsP₃ stimulation in the presence of 100 mM K-gluconate in the same cell. Addition of 60 mM NMG.Cl to the sucrose solution also restored Ca mobilization and the subsequent refilling of the pool (n =4), although the response was less robust than that observed in the presence of Na or K, also shown in Fig. 6B. In contrast, sucrose solutions containing approximately 15 mM HCO₃ (bubbled with 5% CO₂) supported the InsP₃ response in only 20 of 84 cells. Representative records from from responding and nonresponding cells in HCO₃/sucrose buffers are shown in Fig. 6C. Note that the onset of the InsP₃-induced release occurred after a considerable lag in those cells that released Ca.

From these data we conclude that compensatory movements of K, Na, and Cl (and possibly HCO_3) can occur during the release and reloading of Ca during $InsP_3$ stimulation. Although we did not investigate in detail the relative abilities of these ions to support this process, it appeared that Na and K substituted more readily than Cl and much better than HCO_3 for both efflux and reuptake of Ca.

We also investigated the effects of a number of K channel blockers on InsP₃-induced release in normal intracellular solution. Quinidine (100 μ M, n = 3), apamin (0.5 mM, n =2), 4-aminopyridine (2 mM, n = 2), and tetraethylammonium (TEA, 10 mM, n = 2) had no effect on the InsP₃ response compared to control responses in the same cells (not shown).

DISCUSSION

In the present study we used a fluorescence technique recently developed in our laboratory to monitor free [Ca]

Figure 5. Effects of removal of individual ions from intracellular solution on the InsP₃ response. A) Control response to InsP₃ in normal intracellular solution is followed by stimulation in Cl-free buffer (gluconate replacement). B) compares response in nominally HCO_3 -free solution (bubbled with air) with that in $HCO_3/5\%$ CO₂, where [HCO₃] is approximately 15 mM. Responses in absence of Na (C) or K (D) where NMG was used as a replacement cation.

within organelles of single BHK-21 cells permeabilized with SL-O or digitonin. We found that the Ca indicator mag-fura-2 reported [Ca] changes in principally one type of Ca sequestering compartment that could be released encently developed in our laboratory to monitor free [Ca] within organelles of single BHK-21 cells permeabilized with SL-O or digitonin. We found that the Ca indicator mag-fura-2 reported [Ca] changes in principally one type of Ca sequestering compartment that could be released entirely by the Ca-ATPase inhibitor thapsigargin. Calibration of the mag-fura-2 ratio with ionophores indicated that the resting free intraluminal [Ca] was initially $188 \pm 21 \mu M$, and was rapidly reduced to $25 \pm 5 \,\mu\text{M}$ with InsP₃ stimulation. Fluxes of intraluminal Mg upon stimulation were not detected with this method. Agents affecting mitochondrial Ca accumulation (valinomycin, FCCP, oligomycin + azide, and ruthenium red) were all without effect on the mag-fura-2 ratio, as were compounds that modulate the ryanodine receptor, caffeine, and ryanodine. Similarly, no actions of cyclic ADP-ribose (a potent releaser of Ca in some cell types) or GTP (which may promote interstore communication, and affect InsP₃-induced release) were observed in BHK-21 cells. Thus, this cell type appeared to have a relatively simple Ca store, and may therefore be useful for studying properties of the InsP₃ receptor and other phenomena related to InsP3-induced release under more physiological conditions in single semiintact cells using the

mag-fura-2 technique. It would be interesting to quantitate the effects of luminal [Ca] on the sensitivity of the $InsP_3$ receptor (35) and further investigate the nature of quantal or incremental release (36, 37) from these stores.

By directly visualizing changes in Ca sequestering compartments with mag-fura-2, we were also able to monitor the spatial distribution of Ca release sites within permeabilized BHK-21 cells. Other investigators have previously exploited the compartmentalization of fura-2-AM (which has a relatively low K_d) for this purpose (7, 38), although they did not consider the problem of multiple Ca pools in interpreting their data. As we have shown previously (4), this issue needs to be addressed for each cell type individually when using compartmentalized fura-2 or mag-fura-2. Consistent with the results of others (39, 40), we found that InsP₃ elicited changes in store [Ca] throughout the entire cell, although our experiments showed that not all regions responded to the same extent. In particular, we sometimes observed a perinuclear region that appeared to be less responsive to InsP3 than peripheral areas of the cell. The morphology and location of this region, which was conspicuous in about 30% of cells, was highly suggestive of the Golgi apparatus, which has been localized in this cell type by a number of independent methods (see, for example, ref 41). This organelle is known to sequester Ca, but it is not generally believed that the Golgi apparatus constitutes a release site for Ca mediated by InsP₃ (42, 43). However, a

recent study using ion imaging techniques in RBL cells did come to the conclusion that the Golgi apparatus was involved in InsP3-induced Ca release (see ref 44). An alternative explanation, however, is that InsP3-sensitive stores (possibly the endoplasmic reticulum?) are superimposed on unresponsive regions that may correspond to the Golgi apparatus. It is interesting that thapsigargin released Ca from all regions of the cell, including the unresponsive perinuclear zone. Residual Ca that remained in stores after InsP3 stimulation at the periphery of the cell was also released by this agent.

We were concerned that the presence of Ca-sequestering organelles that were insensitive to $InsP_3$ might influence our quantitative estimate of the change in intraluminal free [Ca] in $InsP_3$ -sensitive stores. However, the analysis of images as presented in Fig. 1C indicates that perinuclear hotspots of Ca remaining after stimulation have little effect on the quantitation; the difference between responses in selected regions near the nucleus and at the periphery is not great, and this region generally comprises a small part of the total cell area. Thus, we believe our estimate of the [Ca] change in the store is reliable, although ideally intraluminal [Ca] should be quantified in the intact cell under physiological conditions.

Another aspect of the present work relates to the coupling of InsP₃-induced Ca movements with other ions. Integral membrane proteins involved in ion transport, including channels, exchangers, and pumps, that have traditionally been studied at the level of the plasma membrane (for example by patch clamp, or by measurement of cytosolic ions) may or may not be active as they transit through the secretory pathway to be delivered to the plasma membrane. It has been reported, for example, that anion exchangers destined for the cell surface can function in a pre-Golgi compartment (45). Alternatively, very specific ion transport mechanisms may exist in these organelles that are distinct from those found in the plasma membrane. Relatively little is known about the transport of Na, K, Cl, and HCO₃ in subcellular compartments such as the endoplasmic reticulum and the role of these ions in organellar function. Although the precise anatomical correlate of the InsP₃-sensitive Ca store is open to debate, there is much evidence to indicate that the endoplasmic reticulum is the organelle serving this function (46, 47). Looking at the ionic dependence for release and reloading of Ca is important not only from the perspective of Ca signaling, but it may also provide an indirect way to examine the ion transport properties of the ER membrane in situ. The results presented here can be considered a first step in defining these pathways in BHK-21 cells.

We found that the presence of a permeant counterion was necessary for the movement of Ca into and out of the store. Na, K, Cl, and occasionally HCO_3 ions were able to provide a shunt for both the release and refilling of the InsP₃-sensitive pool. Data in Figs. 3A, 3B indicate that the Mg permeability of the Ca store is quite low, even in InsP₃-treated conditions, so Mg fluxes will probably not contribute significantly to maintenance of electroneutrality. The fact that monovalent cations could support refilling while anions could participate in the release of Ca indicates that the coupling may be more complex than a simple conductive exchange of these ions for Ca. That the InsP₃ response in the presence of Cl alone (and to an even lesser extent, HCO₃ ions) was not as robust as that seen with cations may indicate that anions must first permeate the compartment before they can travel with Ca out of the store during the opening of the InsP₃ receptor. Similarly, for cations to be effective as counterions during store repletion, they must be available at the luminal face of the membrane, but in this case perhaps cytosolic cations can access the store by first exchanging with Ca during the release phase.

In the presence of Na, K, and Cl conductances in parallel to the InsP₃ receptor in BHK-21 cells, it would not be expected in BHK-21 cells that pharmacological blockade of any one type of ion channel or absence of one particular ion would then abolish Ca signaling. We tested several known blockers of K channels, including Cs, apamin, quinidine, 4-aminopyridine, and TEA (Ba could not be used because it interferes with mag-fura-2 fluorescence), but did not discern any effects on the InsP3-induced release and reloading. However, our findings are in contrast to previous studies in other cell types in which specific K channel blockers could markedly inhibit Ca release. For example, in platelet membrane vesicles apamin abolished InsP3-induced Ca release (48), and in rat liver and brain microsomes TEA has been shown to influence release and reuptake (13, 49). These results emphasize 1) that Na, K, and Cl channel activity in the internal store may play a physiological role in controlling Ca release during stimulant treatment and 2) that these channels may be heterogeneous from cell to cell.

Our data show that free [Ca] within the store decreased by approximately 160 µM upon InsP₃ treatment. Given that two univalent ions must move for every Ca ion that crosses the store membrane, and that the buffering of Ca within this compartment could be considerable (say 100-fold), it is possible that there are significant and measurable (i.e., 30 mM) fluctuations in the intraluminal concentration of counterions during the release and reloading process. Our data therefore allow us to speculate about the events involved in the release of Ca from the store. The store membrane has large endogenous permeabilities to K, Na, and Cl but lower permeabilities to Ca, Mg, and HCO₃. InsP₃-induced release of Ca from the store occurs because Ca permeability increases, and there is rapid exchange (to maintain electroneutrality) of K, Na, and Cl through the permeability pathways that are always present in the membrane of the Ca store. The coordination of these ion movements and the mechanisms whereby the volume of the store is simultaneously maintained during the stimulatory cycle are interesting areas deserving further investigation. Fj

This work was supported by a grant from the National Institutes of Health (DK19520). W.-R.S. was supported by the Miller Foundation (Visiting Miller Professor).

REFERENCES

- Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling. Nature 1. 361, 315-325
- 2. Tsien, R. W., and Tsien, R. Y. (1990) Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 6, 715-760
- Hofer, A. M., and Machen, T. E. (1993) Technique for in situ measurement 3. of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2. Proc. Natl. Acad. Sci. USA 90, 2598-2602
- Hofer, A. M., and Machen, T. E. (1994) Direct measurement of free Ca in organelles of gastric epithelial cells. Am. J. Physiol. 267, G442-G451
- 5. Quamme, G. A., and Rabkin, S. W. (1990) Cytosolic free magnesium in cardiac myocytes: identification of a Mg influx pathway. Biochem. Biophys. Res. Commun. 167, 1406–1412
- 6. Raju, B., Murphy, E., Levy, L. A., Hall, R. D., and London, R. E. (1989) A fluorescent indicator for measuring cytosolic free magnesium. Am. J. Physiol. 256, C540-C548
- 7. Short, A. D., Klein, M. G., Schneider, M. F., and Gill, D. L. (1993) Inositol 1,4,5- trisphosphate-mediated quantal Ca release measured by high resolution imaging of Ca within organelles. J. Biol. Chem. 268, 25887-25893
- Koch, G. L. E. (1987) Reticuloplasmins: a novel group of proteins in the 8. endoplasmic reticulum. J. Cell Sci. 87, 491-492
- Ozawa, M., and Muramatsu, T. (1993) Reticulocalbin, a novel endoplasmic reticulum resident Ca-binding protein with multiple EF-hand motifs and a carboxy-terminal HDEL sequence. J. Biol. Chem. 268, 699-705
- Villa, A., Podini, P., Clegg, D. O., Pozzan, T., and Meldolesi, J. (1991) Intracelular Ca stores in chicken Purkinje neurons: differential distribution 10. of the low affinity-high capacity Ca binding protein, calsequestrin, of Ca-AT-Pase and of the ER luminal protein, BiP. (1991) J. Cell Biol. 113, 779-791
- Kemmer, T. P., Bayerdorffer, E., Will, H., and Schulz, I. (1987) Anion dependence of Ca transport and (Ca + K)-stimulated Mg-dependent transport 11. ATPase in rat pancreatic endoplasmic reticulum. J. Biol. Chem. 262, 13758-13764
- Joseph, S. K., and Williamson, J. R. (1986) Characteristics of inositol trisphos-12. phate-mediated Ca release from permeabilized hepatocytes. J. Biol. Chem. 261. 14658-14664
- Muallem, S., Schoeffield, M., Pandol, S., and Sachs, G. (1985) Inositol 13. trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 82, 4433-4437
- Palade, P., Dettbarn, C., Volpe, P., Alderson, B., and Otero, A. S. (1989) Direct inhibition of inositol 1,4,5-trisphoshate-induced Ca release from brain mi-14. crosomes by K channel blockers. Mol. Pharm. 36, 664-672
- Shah, J., Cohen, R. S., and Pant, H. C. (1987) Inositol trisphosphate-induced 15. calcium release from brain microsomes. Brain Res. 4, 1-6
- Negulescu, P. A., and Machen, T. E. (1990) Intracellular ion activities and 16. membrane transport in parietal cells measured with fluorescent dyes. Methods Enzymol. 192, 38-81
- Ahnert-Hilger, C., Mach, W., Föhr, K. J., and Gratzl, M. (1989) Poration by 17. α-toxin and streptolysin O: an approach to analyze intracellular processes. Methods Cell Biol. 31, 63–90
- Tsien, R., and Pozzan, T. (1989) Measurement of cytosolic Ca with quin-2. 18. Methods Enzymol. 172, 230-262
- Ghosh, T. K., Eis, P. S., Mullaney, J. M., Ebert, C. L., and Gill, D. L. (1988) 19. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphos phate-activated calcium release by heparin. J. Biol. Chem. 263, 11075-11079
- 20. Thastrup, O., Dawson, A. P., Scharff, O., Foder, B. J., Drobak, B. K., Bjerrum, P. J., Christensen, S. B., and Hanley, M. R. (1989) Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 27, 17–23
- 21. Goeger, D. E., and Riley, R. T. (1989) Interaction of cysclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem. Pharmacol. 38, 3995-4003
- London, R. E. (1991) Methods for measurement of intracellular magnesium: 22. NMR and fluorescence. Annu. Rev. Physiol. 53, 241-258
- Guillemette, G., Poitras, M., and Boulay, G. (1991) Two Ca transport systems 23. are distinguished on the basis of their Mg dependency in a postnuclear particulate fraction of bovine adrenal cortex. *Cell Calcium* 12, 51–60 Zhang, G. H., and Kraus–Friedmann, N. (1990) The effects of Mg on rat liver
- 24. Bergrozvanny, I., Watras, J., and Ehrlich, B. E. (1991) Bell-shaped cal-
- 25. cium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751-754
- Finch, E. A., Turner, T. J., and Goldin, S. M. (1991) Calcium as a co-agonist 26. of inositol 1,4,5-trisphosphate-induced calcium release. Science 252, 443-446
- Gunter, T. E., and Pfeiffer, D. R. (1990) Mechanisms by which mitochondria 27.

- transport calcium. Am. J. Physiol. 258, C755–C786 Dehlinger-Kremer, M., Zeuzem, S., and Schulz, I. (1991) Interaction of 28. caffeine-, IP3- and vanadate-sensitive Ca pools in acinar cells of the exocrine pancreas. J. Membrane Biol. 1, 85–100
- 29 Schulz, I., Thevenod, F., and Dehlinger-Kremer, M. (1989) Modulation of intracellular free Ca concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Ca pools. Cell Calcium 10, 325-336
- Dargie, P. J., Agre, M. C., and Lee, H. C. (1990) Comparison of Ca mobilizing 30. activities of cyclic ADP-ribose and inositol trisphosphate. Cell Regul. 1, 279-290
- 31. Ghosh, T. K., Mullaney, J. M., Tarzai, F. I., and Gill, D. L. (1989) GTP-activated communication between distinct inositol 1,4,5-trisphosphate-sensitive and -insensitive calcium pools. *Nature* **340**, 236-239 Mullaney, J. M., Yu, M., Ghosh, T. K., and Cill, D. L. (1988) Calcium entry
- 32. into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Proc. Natl. Acad. Sci. USA 85, 2499-2503
- 33. Fasolato, Č., Zottini, M., Clementi, E., Zacchetti, D., Meldolesi, J., and Pozzan, T. (1991) Intracellular Ca pools in PC12 cells: three intracellular pools are distinguished by their turnover and mechanisms of Ca accumulation, storage and release. J. Biol. Chem. 266, 20159-20167
- Zacchetti, D., Clementi, E., Fasolato, C., Lorenzon, P., Zottini, M., Grohovaz, F., Fumagalli, G., Pozzan, T., and Meldolesi, J. (1991) Intracellular Ca pools in PC12 cells: a unique, rapidly exchanging pool is sensitive to both InsP3 and caffeine-ryanodine J. Biol. Chem. 266, 20152-20158
- 35. Missiaen, L., De Smedt, H., Droogmans, G., and Casteels, R. (1992) Ca release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca in permeabilized cells. Nature 357, 599-602
- Meyer, T., and Stryer L. (1990) Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc. Natl. Acad. Sci. USA 87, 3841-3845
- Muallem, S., Pandol, S. J., and Beeker, T. C. (1989) Hormone-evoked calcium release from intracellular stores is a quantal process. J. Biol. Chem. 264, 205-212
- Clennon, M.C., Bird, C. St. J., Takemura, H., Thastrup, O., Leslie, B., and Putney, J. W., Jr. (1993) In situ imaging of agonist-senitive calcium pools in 38
- AR4-2J pancreatoma cells. J. Biol. Chem. 267, 25568-25575 Renard-Rooney, D. C., Hajnóczky, G., Seitz, M. B., Schneider, T. G., Thomas, A. P. (1993) Imaging of inositol 1,4,5-trisphosphate-induced Ca fluxes in single permeabilized hepatocytes. Demonstration of both quantal and non-39. quantal patterns of Ca release. J. Biol. Chem. **268**, 23601–23610 HajnOczky, G., Gao, E., Nomura, T., Hoek, J. B., Thomas, A. P. (1993)
- 40. Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate induced Ca mobilization in permeabilized hepatocytes. Biochem. J. 293, 413-422
- Pagano, R. E., Martin, O. C., Kang, H. C., and Haugland, R. P. (1991) A novel 41. fluorescent ceramide analogue for studying membrane traffic in animal cells, accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113, 1267-1279 Chandra, S., Kable, E. P. W., Morrison, G. H., and Webb, W. (1991) Calcium
- 42. sequestration in the Golgi apparatus of cultured mammalian cells revealed by laser scanning confocal microscopy and ion microscopy. J. Cell Sci. 100, 747-752
- Hodson, S. (1978) The ATP- dependent concentration of calcium by a Golgi 43. apparatus-rich fraction isolated from rat liver. J. Cell Sci. 30, 117-128 Chandra, S., Fewtrell, C., Millard, P. J., Sandison, D. R., Webb, W. W., and
- 44. Morrison, G. H. (1994) Imaging of total intracellular calcium and calcium influx and efflux in individual resting and stimulated tumor mast cells using ion microscopy. J. Biol. Chem. 269, 15186-15(194
- Ruetz, S., Lindsey, A. E., Ward, C. L., and Kopito, R. R. (1993) Functional 45. activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment. J. Cell Biol. 121, 37-48
- Rossier, M. F., and Putney, J. W., Jr. (1991) The identity of the calcium storing, inositol 1,4,5-trisphosphate-sensitive organelle in non-muscle cells: calcoisome, endoplasmic reticulum...or both? TINS 14, 310-314
- Sitia, R., and Meldolesi, J. (1992) The endoplasmic reticulum: a dynamic
- Orachwork of specialized subregions. *Mol. Biol. Cell* 3, 1067–1072 O'Rourke, F., Soons, K., Flaumenhauft, R., Watras, J., Baio-Larue, C., Matthews, E., and Feinstein, M. B. (1994) Ca release by inositol 48. 1,4,5-trisphosphate is blocked by the K channel blockers apamin and tetrapentylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein. Biochem. J. 300, 673-683
- 49. Shah, J., and Pant, H. C. (1988) Potassium channel blockers inhibit inositol trisphosphate- induced calcium release in microsomal fractions isolated from the rat brain. Biochem. J. 250, 617-620

Received for publication December 10, 1994.

Accepted for publication March 30, 1995.