Peptide 'Velcro*': design of a heterodimeric coiled coil

Erin K. O'Shea†, Kevin J. Lumb† and Peter S. Kim‡

Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, †Department of Chemistry and ‡Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.

Background: The leucine zipper is a protein structural motif involved in the dimerization of a number of transcription factors. We have previously shown that peptides corresponding to the leucine-zipper region of the Fos and Jun oncoproteins preferentially form heterodimeric coiled coils, and that simple principles involving electrostatic interactions are likely to determine the pairing specificity of coiled coils. A critical test of these principles is to use them as guidelines to design peptides with desired properties.

Results: Based on studies of the Fos, Jun and GCN4 leucine zippers, we have designed two peptides that are predominantly unfolded in isolation but which, when mixed, associate preferentially to form a stable, parallel, coiled-coil heterodimer. To favor heterodimer formation, we chose peptide sequences that would be predicted to give destabilizing electrostatic interactions in the homodimers that would be relieved in the heterodimer. The peptides have at least a 10^5 fold preference for heterodimer formation, and the dissociation constant of the heterodimer in phosphate-buffered saline is approximately 30 nM at pH 7 and 20°C. Studies of the pH and ionic strength dependence of stability confirm that heterodimer formation is favored largely as a result of electrostatic destabilization of the homodimers.

Conclusions: Our successful design strategy supports previous conclusions about the mechanism of interaction between the Fos and Jun oncoproteins. These results have implications for protein design, as they show that it is possible to design peptides with simple sequences that have a very high preference to pair with one another. Finally, these sequences with 'Velcro'-like properties may have practical applications, including use as an affinity reagent, in lieu of an epitope tag, or as a way of bringing together two molecules in a cell.
Results and discussion

Peptide design

The coiled-coil structure consists of two right-handed \(\alpha \)-helices wrapped around one another with a slight left-handed superhelical twist [10–12]. This structural motif is found in many proteins, including tropomyosin, keratin, bacterial surface proteins, leucine-zipper proteins and tumour suppressor gene products [12–16]. The sequences of coiled-coil proteins consist of heptad repeats, where positions of the heptad are labeled with the letters \(\text{a-g} \) [5,17]. Analysis of these sequences has shown that coiled-coil proteins have a characteristic 4-3 hydrophobic repeat, with hydrophobic amino acids spaced every four and then every three residues [5,17]. The hydrophobic residues occur at positions \(\text{a and d of the heptad repeat, whereas residues at positions e and g are predominantly charged} \) (Fig. 1a).

These sequence preferences were rationalized by McIachlan and Stewart [5] with a three-dimensional model for the coiled coil. Experimental support for this model is provided by the X-ray structure of the GCN4 leucine-zipper homodimer [3], a two-stranded, parallel coiled coil. The structure of the coiled coil can be represented as a ladder, in which the helix backbones are the sides of the ladder and the rungs are comprised of residues at the dimer interface (Fig. 1a). There are two types of rung, each containing four residues, which alternate along the superhelical axis. One type of rung consists of residues from positions \(\text{a, a', g, g'} \), and the second type of rung has residues from positions \(\text{d, d', e, e'} \). Residues at positions \(\text{e and g} \) can also participate in interhelical ionic interactions (Fig. 1a).

The stability of homodimers containing residues of like charge at positions \(\text{e and g} \) is strongly pH-dependent [1,4], which can be explained by reference to the crystal structure of the GCN4 leucine zipper [3]. Side-chain methylene groups of residues at positions \(\text{c and g} \) pack against the predominantly hydrophobic residues at positions \(\text{a and d} \), completing the dimer interface (Fig. 1b) and bringing together charged groups of side chains from opposing subunits (Fig. 1a). Thus, if positions \(\text{c and g} \) are occupied by residues of like charge, destabilization of the dimer is expected to result from electrostatic repulsion as well as loss of hydrophobic contacts.

The two peptides that we have designed differ only at positions \(\text{e and g} \) (Fig. 2). Glutamic acid was chosen for these positions in one peptide, designated ACID-p1, whereas lysine was chosen in a second peptide, designated BASE-p1. The ACID-p1 and BASE-p1 homodimers are expected to be destabilized at neutral pH by unfavorable electrostatic interactions. Leucine was chosen for positions \(\text{a and d} \) because it is the most common amino acid at these positions in coiled-coil proteins [6–8] and because Hodges [18,19] and DeGrado [20] have placed leucine at these positions

Fig. 1. Schematic representations of the coiled-coil structure illustrating the interactions between residues at the dimer interface. (a) The coiled-coil structure can be thought of as a ladder with sides formed by the helix backbones and alternating rungs composed of four residues. A side view of a coiled coil is shown: the positions of the heptad of one subunit are labeled with the letters \(\text{a-g} \); residues \(\text{a-g} \) are on the other subunit. One set of rungs (red) consists of side chains from positions \(\text{a, a', g, g'} \), whereas the second set (blue) consists of side chains from positions \(\text{d, d', e, e'} \) (only \(\text{a, g, d and e} \) are marked). Residues at positions \(\text{e and g} \) pack against positions \(\text{a and d} \), as well as participating in interhelical electrostatic interactions, which are indicated with bridges. For simplicity, the supercoiling of the helices is not depicted. (b) Schematic cross section through the dimer, illustrating the interactions between four residues in a rung. The large circles represent the helical backbone and line segments represent bonds between carbon atoms. As an example, a rung consisting of leucine at position \(\text{d and glutamate at position e} \) is shown. Residues at positions \(\text{d and d'} \) make side-to-side interactions, as in a handshake. Additionally, methylene groups from residues at the charged positions \(\text{e and e'} \) make contacts with the hydrophobic residues at positions \(\text{d and d'} \). These types of interaction are also seen in the other type of rung, in which methylene groups from residues at positions \(\text{g and g'} \) make contacts with residues at positions \(\text{a and a'} \).
zipper, in which the helices have a parallel orientation, an asparagine is part of the dimer interface and forms a buried hydrogen bond with the corresponding asparagine from the opposing subunit [3]. An asparagine at position a is expected to disfavor an antiparallel orientation of helices, because each asparagine (at position a) would be paired with a leucine (position d) from the opposing subunit. Based on similar reasoning, an asparagine at position a is expected also to favor an unstaggered arrangement of the helices [3].

The peptides contain alternating alanine and glutamine residues at positions b and c. Uncharged residues were desired at these positions in order to avoid substantial electrostatic interactions with adjacent residues at positions e and g (Fig. 2). In addition, alanine and glutamine residues promote helix formation [20,22,23] and the polar glutamine side chain is expected to increase solubility [24]. Lysine was chosen for the residues on the outside of the dimer at position f to increase the solubility of the peptides and to discourage aggregation. One residue at position f was chosen to be a tryptophan in order to facilitate concentration determination by absorbance [25].

The ACID-p1/BASE-p1 heterodimer is helical and stable CD spectra indicate that the individual ACID-p1 and BASE-p1 peptides are predominantly unfolded at 37 °C and pH 7.0 in phosphate-buffered saline (PBS). In contrast, the CD spectrum of an equimolar mixture of ACID-p1 and BASE-p1 indicates that the mixture is highly helical. This helical structure is stable: at a heterodimer concentration of 5 μM, the T_m is 65 °C in PBS at pH 7. In addition, whereas a urea-induced unfolding transition is observed for the heterodimer, the isolated peptides show no evidence for cooperative unfolding. Sedimentation equilibrium studies of an ACID-p1 plus BASE-p1 mixture at 20 °C in PBS, pH 7 indicate definitively that it has the molecular weight expected for the heterodimer: the observed molecular weight is 7200 D (the expected molecular weight is 7123 D). Thus, the ACID-p1 and BASE-p1 peptides associate preferentially and fold as a stable, helical heterodimer.

The amide proton exchange behavior of the ACID-p1/BASE-p1 heterodimer was characterized by nuclear magnetic resonance (NMR) spectroscopy. A coiled-coil dimer with a well-packed hydrophobic core is expected to have some protons protected from exchange by factors approaching the equilibrium constant for folding of the molecule. For example, several amide protons in a GCN4 leucine zipper peptide have protection factors of 10^5-10^6, comparable to the equilibrium constant for folding [26]. In contrast, slowly exchanging protons in the designed four-helix bundle...
Peptide 'Velcro': design of a heterodimeric coiled coil

O'Shea, Lumb and Kim

Characterization of the disulfide-bonded heterodimer and homodimers

Our design predicts that the ACID and BASE peptides will fold as parallel, helical dimers but, at practical peptide concentrations, the ACID-p1 and BASE-p1 homodimers are too unstable to study. One way to stabilize dimeric coiled-coil peptides is to join the peptides with a disulfide-bond linker [1,2,19,30,31]. Therefore, versions of the ACID and BASE peptides containing an amino-terminal cysteine followed by two glycines, designated ACID-p1N and BASE-p1N, were made and studied. The glycines allow disulfide-bond formation without distortion of the coiled-coil structure [2]. CD studies demonstrate that the disulfide-bonded heterodimer and homodimers are greater than 80% helical at 0°C and that a cooperative thermal unfolding transition is observed for each dimer, indicating that the ACID and BASE homodimers can fold when stabilized with a disulfide-bond linker.

To determine if the orientation of the helices is parallel, the concentration dependence of stability was studied for each of the disulfide-bonded peptide dimers [1,2]. A dimer in which the helices are joined in the preferred orientation is expected to have stability and structure that is independent of peptide concentration. Alternatively, a dimer in which the helices are covalently linked in the unfavorable orientation is expected to have concentration-dependent stability and structure, arising from the intermolecular association of dimers.

When the ACID-p1N and BASE-p1N peptides are joined with a disulfide bond (that is, with a parallel orientation), the Tm of the heterodimer and each homodimer was found to be independent of peptide concentration from approximately 2.5 to 170 μM (see Fig. 5 legend). In contrast, when the heterodimer is disulfide-bonded in the antiparallel orientation (by joining the peptide ACID-p1N to a BASE peptide that has a carboxy-terminal sequence Gly-Gly-Cys), the CD signal is dependent on peptide concentration, indicating that higher-order oligomers are formed. In PBS, pH 7.0 containing 2.25 M GdCl at 0°C, the [θ]322 values of the antiparallel heterodimer change from −11 100 deg cm² dmol⁻¹ at 9 μM to −25 300 deg cm² dmol⁻¹ at 25 μM. Collectively, these results indicate that the folded conformations of the ACID and BASE heterodimer and homodimers are parallel.

Mechanism of specificity

Our design strategy sought to drive heterodimer formation by electrostatic repulsion in the homodimers. Nonetheless, because the ACID and BASE peptides contain oppositely charged residues at the e and g positions of the coiled-coil repeat, it is very plausible instead that electrostatic attraction between these peptides provides a major driving force for heterodimer formation.

The global stability of the ACID-p1/BASE-p1 heterodimer, under the conditions in which hydrogen exchange was studied, is −6.7 kcal mol⁻¹. Thus, the maximum degree of protection from exchange is expected to be about 10⁵. At a time when protons that are protected by a factor of approximately 10⁴ are expected to be half-exchanged, twelve amide proton resonances are present in the spectrum (Fig. 4). This suggests strongly that the interface between the ACID-p1 and BASE-p1 helices is well-packed [28,29].

α4 are protected from exchange by factors of only 10³–10⁵, compared to the maximum of 10¹⁶ expected from the global stability of the molecule [27,28]. These NMR data and the results of other experiments suggest that α4 contains fluctuating tertiary structure [28,29].

The global stability of the ACID-p1/BASE-p1 heterodimer is well-packed [28,29].

Fig. 4. Several amide protons are protected from exchange by a factor of at least 10⁴, suggesting that the interface between helices in the ACID-p1/BASE-p1 heterodimer has a well-defined structure. A region of the one-dimensional ¹H-NMR spectrum containing resonances arising from the amide and aromatic protons is shown. The top spectrum is taken in H2O (0 hours) and the bottom spectrum is taken 70 hours after the sample was dissolved in D2O (pH 4.7, 20°C). The dissociation constant measured by urea denaturation (see later, Fig. 8a) indicates that a 1M solution of peptide would have a free energy of unfolding at 20°C, pH 7.0 of −10.1 kcal mol⁻¹. The concentration dependence of stability is given by ΔG° = ΔG + RTln(c), where ΔG° is the standard state free energy and c is the concentration of peptide. Thus, a 3 mM peptide solution at 20°C, pH 7.0 is expected to have a free energy of unfolding of −6.7 kcal mol⁻¹. Because the stability of the ACID-p1/BASE-p1 heterodimer is independent of pH from pH 7 to pH 4.5 (Fig. 5a), the free energy of unfolding under the exchange conditions (pH 4.7, PBS) is estimated to be −6.7 kcal mol⁻¹, corresponding to an equilibrium constant of 10⁵. At pH 4.7, 20°C the half-time for exchange of an unprotected amide proton is approximately 0.4 minutes [43]; thus, protons that are half-exchanged after 70 hours have protection factors of 10⁴.

9.2 8.8 8.4 8.0 7.6

ppm
Assuming that one of these mechanisms predominates, some simple predictions can be made about the pH and ionic strength dependence of stability. If electrostatic destabilization of homodimers is dominant, then the homodimers will be more stable when the charges are removed by titration at extremes of pH or when the ionic strength is increased. In contrast, if electrostatic attraction between the ACID and BASE peptides in the heterodimer provides the dominant driving force for preferential heterodimer formation, then the heterodimer will be less stable as charges are removed by titration at pH extremes (that is, a bell-shaped curve for the pH dependence of stability would result) and the stability of the heterodimer should decrease at higher ionic strength.

The stability of both homodimers in the more stable disulfide-bonded species is highly dependent on both pH and ionic strength (Figs 5 and 6). The T_m of the ACID-p1N/ACID-p1N homodimer is more than 80°C higher at acidic pH than at pH 7, indicating clearly that it is destabilized by negatively charged residues at neutral pH (Fig. 5b). Similarly, the BASE-p1N/ BASE-p1N homodimer is approximately 20°C more stable at basic pH than at pH 7, indicating that it is destabilized at neutral pH by positively charged basic residues. Both homodimers are stabilized substantially by increasing ionic strength at neutral pH (Fig. 6b), indicating that they are destabilized by repulsive electrostatic interactions.

At neutral pH, the BASE-p1N/BASE-p1N homodimer is substantially more stable than the ACID-p1N ACID-p1N homodimer (Fig. 5b). It is likely that part of the reason for this difference in stability is the difference in the length of the side chains of residue at positions e and g. Whereas ACID-p1N has glutamate, containing two methylene groups, at position e and g, BASE-p1N has lysine, which contains four methylene groups. The longer lysine side chain allows for more flexibility and better solvation of the terminal charged group. This is supported by studies of BASE peptides containing the non-natural amino acids ornithine (ORN-p1; three methylene groups) or diaminobutyric acid (DAB-p1; two methylene groups): positions e and g. Unlike BASE-p1N, disulfide-bonded homodimers containing these non-natural amino acids do not show evidence for structure at 0°C, nor for a cooperative thermal unfolding transition. Additionally, the stability of the corresponding ACID/BASE heterodimer decreases with decreasing side chain length: in PBS at pH 7, the disulfide-bonded ACID-p1N/DAB-p1N and ACID-p1N/ORN-p1N heterodimers have T_m values of approximately 63°C and 80°C, respectively (the ACID-p1N/BASE-p1N heterodimer has a T over 100°C).

Because the disulfide-bonded ACID-p1N/BASE-p1 heterodimer is exceedingly stable, the pH and ionic strength dependence of stability can be tested experimentally.
The ionic strength-dependence of stability indicates that the ACID and BASE homodimers are destabilized by unfavorable electrostatic interactions, whereas the net electrostatic contribution to the stability of the heterodimer is minimal. (a) The stability of the heterodimer, measured in the absence of a disulfide bond, is relatively independent of ionic strength. (b) In contrast, the stability of the disulfide-bonded homodimers increases at high ionic strength.

The stability of the heterodimer was studied in the absence of a disulfide bond. At pH 7, the stability of the ACID-p1/BASE-p1 heterodimer is relatively independent of ionic strength (Fig. 6a). In addition, there is little change in the stability of the heterodimer between pH 4.5 and pH 9 (Fig. 5a). It is, however, difficult to assess the stability of the heterodimer at extremes of pH (< 3.5 and > 10.5) because at these pH extremes the thermal denaturation curves contain evidence for more than one transition, suggesting that other species, such as homodimers, are formed or that folding is not two-state.

To evaluate the stability of the heterodimer at extremes of pH, the pH-dependence was also studied in the presence of the disulfide bond but in 3 M GuHCl to destabilize the heterodimer (Fig. 5c). A comparable concentration of NaCl has little effect on the stability of the heterodimer (Fig. 6a). The striking result is that the stability of the disulfide-bonded heterodimer increases by approximately 25 °C at low pH (Fig. 5c). Sedimentation equilibrium studies show definitively that the amino-terminal disulfide-bonded ACID-p1N/BASE-p1N heterodimer remains dimeric at pH 12, the observed molecular weight was 7200 D at pH 2 and 7700 D at pH 7 (the expected value is 7556 D). Thus, the negatively charged glutamate residues have a net destabilizing effect in the heterodimer.

Fig. 7. 13C-NMR spectroscopy indicates that the pKₐ values for the glutamic acid side chains in the heterodimer are close to normal, or slightly increased, in PBS at 20 °C. (a) The changes in chemical shift with pH of the carboxylate 13C resonances of AcGluOMe indicate that the pKₐ of the carboxylic acid group of AcGluOMe is 4.5. (b) The changes in chemical shift with pH of the carboxylate 13C resonance of disulfide-bonded ACID-p1N/BASE-p1N indicates that the pKₐ values of the glutamic acid residues are either close to normal (pKₐ = 4.4, ■, and pKₐ = 4.9, △) or slightly increased (pKₐ = 5.2-5.3, ○).

The measurements described above do not, however, rule out extremely large pKₐ shifts for some ionizable groups in the heterodimer, which can result from stable salt bridge formation (for example, see [32]). The pKₐ values for the glutamic acid residues in the heterodimer were therefore measured directly by natural-abundance 13C NMR. The disulfide-bonded form of the heterodimer was studied to prevent formation of alternate species such as the ACID homodimer at low pH. In contrast to the decrease in pKₐ expected if the glutamic
acid residues were involved in stabilizing salt bridges, the observed pK\textsubscript{a} values for all glutamic acid residues in the heterodimer are close to or higher than the pK\textsubscript{a} for blocked glutamic acid measured under the same conditions (Fig. 7).

The finding that some of the glutamic acid residues have increased pK\textsubscript{a} values is consistent with the observation that the heterodimer is more stable at low pH (Fig. 5c). The most likely explanation for the increased stability at low pH is that electrostatic repulsion between the glutamic acid residues in the individual ACID helix is destabilizing, even in the heterodimer. Similarly, the Fos/Jun leucine-zipper heterodimer [1,4] and previously designed coiled coils that contain acidic residues at positions b and e [1,19] are more stable at low pH than at neutral pH, suggesting that there is substantial electrostatic repulsion within the helices of these coiled coils at neutral pH [1,4]. In general, however, intrahelical destabilization can be minimized in designed coiled coils by utilizing a 14-residue repeat in which residues at a particular position in the heptad repeat are different.

It is puzzling that these studies do not indicate that interhelical salt bridges substantially stabilize the heterodimer, given that the heterodimer has charged side chains that might be expected to form salt bridges of the same type seen in the crystal structure of the GCN4 leucine zipper [3]. It is possible that salt bridges do not form in the heterodimer. Alternatively, the salt bridges may form but not be significantly stabilizing, as appears to be the case for the GCN4 leucine-zipper peptide. Finally, the stabilizing effect of salt bridges could be offset by destabilizing factors. For example, the protonated form of a glutamic acid residue has a higher helix propensity than the ionized form [33,34] and, as discussed above, electrostatic repulsion between residues of like charge within the ACID peptide helix is destabilizing even within the heterodimer.

Even if stabilizing salt bridges are present in the heterodimer, these results indicate that the net electrostatic contribution to specificity from the heterodimer per se is either minimal or unfavorable. In contrast, both homodimers have stabilities that are dependent strongly on pH and ionic strength, in a manner that would be expected if the homodimers have substantial net destabilizing electrostatic interactions at neutral pH. We conclude that our design strategy was successful: preferential heterodimer formation is driven primarily by destabilization of the homodimers.

Quantitation of specificity

Because the preference for heterodimer formation in a mixture of the ACID and BASE peptides is so large, the ratio of heterodimer to homodimers cannot be measured readily from an equilibrium mixture of the two peptides. However, the degree of specificity can be estimated because K\textsubscript{spec}, the equilibrium constant describing the ratio of heterodimer to homodimers, can be expressed in terms of the dissociation constants for each dimer [4]. Assuming a two-state model for monomer-dimer equilibrium,

\[
K_{\text{spec}} = \frac{K_d(AB)}{[K_d(AA)^{1/2} \times K_d(BB)^{1/2}]}
\]

where \(K_d(AB), K_d(AA)\) and \(K_d(BB)\) are the dissociation constants of the ACID-p1/BASE-p1 heterodimer, the ACID-p1 homodimer and the BASE-p1 homodimer, respectively.

The dissociation constant for each dimer was determined so that the degree of specificity, \(\Delta G_{\text{spec}}\), given by \(\Delta G_{\text{spec}} = -RT\ln K_{\text{spec}}\), could be estimated. A dissociation constant of \(3 \times 10^{-8} \text{M}\) for the ACID-p1/BASE-p1 heterodimer was determined by fitting the CD signal as a function of urea concentration to a monomer–dimer equilibrium (Fig. 8a). An estimate of the dissociation constant for each homodimer was obtained from measurements of the helical CD signal as a function of

![Figure 8](image-url)
Peptide 'Velcro': design of a heterodimeric coiled coil

O'Shea, Lumb and Kim

Peptide 'Velcro': design of a heterodimeric coiled coil

Peptide 'Velcro': design of a heterodimeric coiled coil

Conclusions

Our results indicate that the designed ACID and BASE peptides fold as parallel, helical dimers that have a very high preference for the heterodimeric state. As the ACID and BASE peptides were designed using principles learned from the study of preferential heterodimer formation in the Fos and Jun peptide system, our results support previous conclusions about the basis and mechanism of Fos/Jun specificity [1,4]. In both cases, unfavorable electrostatic interactions in the homodimers contribute more to dimerization specificity than favorable electrostatic interactions in the heterodimer.

Our results have implications for protein design, because they demonstrate that it is possible to design simple helical sequences that pair with substantial specificity. The design of simple molecules consisting of two secondary structural elements may lead to stepwise strategies for the design of larger proteins. In contrast to many other designed peptides, the ACID/BASE heterodimer does not contain fluctuating tertiary structure, as judged by amide proton exchange studies, possibly because a polar group was introduced into the otherwise hydrophobic interface [3,29,35,36]. Finally, the ACID-p1 and BASE-p1 peptides can be thought of as peptide 'Velcro': the individual peptides have little self-affinity under physiological conditions of temperature, pH and ionic strength, but the two peptides have high affinity for each other. It may be possible to use these properties for practical applications, including use in affinity reagents, in place of an epitope tag or as a way to bring together two molecules in a cell.

Materials and methods

Peptide synthesis

Peptides were synthesized using small-scale FMOC HBTU reaction cycles and acetic anhydride capping on an Applied Biosystems Model 431A peptide synthesizer [37]. Peptides were cleaved from the resin with trifluoroacetic acid (TFA) using standard cleavage methods and were desalted on a Sephadex G-10 column in 5% acetic acid. Final purification was by reverse-phase high performance liquid chromatography (HPLC) with a Vydac preparative C18 column (2.2 x 25 cm) at 25°C using linear acetonitrile/H2O gradients in the presence of 0.1% TFA. Peptide purity was greater than 90%, as judged by analytical HPLC. The identity of each peptide was confirmed by laser desorption mass spectrometry on a Finnigan Lasermat and each was found to be within 2D of the expected mass. All peptides are acetylated at the amino terminus and amidated at the carboxyl terminus.

CD spectroscopy

CD studies were performed on an Aviv Model 60DS or 62DS CD spectrophotometer equipped with a thermoelectric controller. Peptide concentrations were determined by absorbance at 280 nm in 6M GuHCl [25] and samples were prepared in PBS (150 mM NaCl, 10 mM sodium phosphate). CD spectra (Fig. 3a) were measured at 37°C, pH 7.0 using a peptide concentration of 10 µM ACID-p1, 10 µM BASE-p1, or 5 µM ACID-p1 plus 5 µM BASE-p1. Urea denaturation curves shown in Figure 3b were determined at 37°C, pH 7.0 using a peptide concentration of 20 µM ACID-p1, 20 µM BASE-p1, or 10 µM ACID-p1 plus 10 µM BASE-p1. Thermal melting curves were determined by monitoring the CD signal at 222 nm as a function of temperature. For studies of the pH dependence of stability (Fig. 5), melting curves were recorded with 5 µM homodimer or 5 µM heterodimer in PBS with the pH adjusted to the desired value. For studies of the ionic strength dependence (Fig. 6), melting curves were recorded at pH 7.0 with 5 µM heterodimer or with 2.5 µM heterodimer in 10 mM sodium phosphate in the presence of the indicated concentration of NaCl. The Tm values were estimated by taking the first derivative of the CD signal with respect to temperature and finding the minimum of this function [38]. All thermal melts performed at pH values below pH 8 are reversible; more than 90% of the CD signal at 0°C was recovered after the melt. The urea denaturation curve shown in Figure 3b was determined at 20°C, pH 7.0 with 10 µM ACID-p1 plus 10 µM BASE-p1. A two-state model for unfolding was assumed and the urea denaturation curve for the heterodimer was fit with a non-linear least-squares fitting program (KaleidaGraph, Synergy Software) to the following equation that describes the urea dependence of the CD signal for a monomer-dimer equilibrium:

\[\theta = \theta_0 + \left(\theta_m - \theta_0 \right) \exp\left(\frac{\Delta G^\theta + m[\text{urea}]/RT}{4C_T}\right) + \left[\exp\left(\frac{\Delta G^\theta + m[\text{urea}]/RT}{2C_T}\right) - 1\right] \exp\left(\frac{\Delta G^\theta + m[\text{urea}]/RT}{2C_T}\right) \]

where \(\theta = \text{CD signal at 222 nm} \), \(\theta_0 \) and \(\theta_m \) are linear equations describing the urea dependence of the CD signal of the dimer and unfolded monomer, respectively; \(\Delta G^\theta \) is free...
energy of folding under standard conditions of 20°C and 1 M concentration of peptide chains; m = the dependence of the free energy of folding on denaturant concentration; R = gas constant; T = temperature in K; C₀ = total concentration of peptide chains in M. Measurements of the CD signal at 222 nm as a function of peptide concentration for the ACID-p1 and BASE-p1 homodimers were performed at 20°C, pH 7.0 (Fig. 8b).

Analytical centrifugation
Sedimentation equilibrium was performed at 20°C using a Beckman XL-A ultracentrifuge at rotor speeds between 30 and 40 k rpm. Three samples at a heterodimeric concentration of 22 μM, 44 μM and 66 μM in PBS were analyzed. Samples were dialyzed (> 17 hours) against the reference buffer (PBS). Data were fit to an ideal model plot of radial distance squared versus log(concentration). The residuals were analyzed to reveal the presence of species other than the dimer; in no case were systematic deviations of the residuals observed. Partial molar volumes and solvent densities were calculated as described by Laue et al. [39].

NMR spectroscopy
One-dimensional 1H-NMR spectra were recorded on a Bruker AMX 500 spectrometer operating at 500.1 MHz for 1H at 20°C with a sweep width of 6824.1 Hz and a delay of 1.2 seconds. Samples and volumes and solvent densities were calculated as described by the Howard Hughes Medical Institute. This research was supported by the Howard Hughes Medical Institute.

Acknowledgments: We thank T. Alber, J. Weissman, S. Peng, J. SU-ley, D. Lockhart and B. Tidor for helpful discussions; M. Milhollen and R. Rutkowski for expert peptide synthesis and mass spectrometry; and J. Hu for Figure 1a. EKO was an Howard Hughes Medical Institute Predoctoral Fellow. PSK is an Howard Hughes Medical Institute Pew Scholar in the Biomedical Sciences. This research was supported by the Howard Hughes Medical Institute.

References
6. PARRY AD: Coiled-coils in α-helix-containing proteins: analysis of the residue types within the heptad repeat and the use of these data in the prediction of coiled-coils in other proteins. Biochim Biophys Acta 1982, 691:310-324.
32. ANDERSON DE, BECKETT WJ, DAGHOURT FW: pH-induced denaturation of proteins: a single salt bridge constitutes 3-5
Peptide 'Velcro': design of a heterodimeric coiled coil O'Shea, Lumb and Kim

Received: 16 August 1993; revised: 9 September 1993. Accepted: 10 September 1993.