1. Koshland, D., Meyers, S.E., and Chesick, J.P. (1977). The crystal structures of 1,3,5-trimethybenzenetricarbonyl-molybdenum and hexamethylben zenetricarbonyl-molybdenum. Acta. Cryst. B33:2013-2023.
  2. Koshland, D. and Botstein, D. (1980). Secretion of b-lactamase requires the carboxy end of the protein. Cell 20:749-760.
  3. Shortle, D., Koshland, D., Weinstock, G.M., and Botstein, (1980). Segment-directed mutagenesis: Construction in vitro of point mutations limited to a small predetermined region of a circular DNA molecule. Proc. Natl. Acad. Sci. USA 77:5375-5379.
  4. Koshland, D. and Botstein, D. (1982). Evidence for posttranslational translocation of b-lactamase across the bacterial inner membrane. Cell 30:893-902.
  5. Koshland, D., Sauer, R.T. and Botstein, D. (1982). Diverse effects of mutations in the signal sequence on the secretion of b-lactamase in Salmonella typhimurium. Cell 30:903-914.
  6. Koshland, D., Kent, J.C., and Hartwell, L.H. (1984). Genetic analysis of the mitotic transmission of minichromosomes. Cell 40:393-403.
  7. Koshland, D. and Hartwell, L.H. (1987). The structure of sister minichromosome DNA prior to anaphase in Saccharomyces cerevisiae. Science 238:1713-1716.
  8. Koshland, D., Rutledge, L., Fitzgerald-Hayes, M. and Hartwell, L.H. (1987). A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48:801-812.
  9. Koshland, D. and Hieter, P., Visual assay for chromosome ploidy. Recombinant DNA In, Methods in Enzymology, R.Wu and L. Grossman, eds., Academic Press, Orlando, Florida. Vol. 155:351-372.
  10. Koshland, D., Mitchison, T.J., and Kirschner, M. (1988). Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331:499-504.
  11. Palmer, R.E., Koval, M., and Koshland, D. (1989). The dynamics of chromosome movement in the budding yeast Saccharomyces cerevisiae. J. Cell. Biol. 109:3355-3366.
  12. Palmer, R., Hogan, E., and Koshland, D. (1990). Mitotic transmission of artificial chromosomes in cdc mutants of the yeast Saccharomyces cerevisiaeGenetics 125:763-774.
  13. Shero, J.H., Koval, M., Spencer, F., Palmer, R., Hieter, P., and Koshland, D. (1991). Analysis of chromosome segregation in Saccharomyces cerevisiae. Methods in Enzymol. 194:749-773.
  14. Kingsbury, J. and Koshland, D. (1991). Centromere-dependent binding of yeast minichromosomes to microtubules in vitro.  Cell 66:483-495.
  15. Sethi, N., Monteagudo, M.C., Koshland, D., Hogan, E. and Burke, D.J. (1991). The CDC20 gene product of Saccharomyces cerevisiae, a b-transducin homolog, is required for a subset of microtubule-dependent cellular processes. Mol. Cell. Biol. 11:5592-5602.
  16. Hogan, E. and Koshland, D. (1992). Addition of extra origins of replication to a minichromosome suppresses its mitotic loss in cdc6 and cdc14 mutants of Saccharomyces cerevisiaeProc. Natl. Acad. Sci. USA 89:3098-3102.
  17. Palmer, R.E., Sullivan, D.S., Huffaker, T. and Koshland, D. (1992). Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiaeJ. Cell Biol. 119:583-593.
  18. Koshland, D. (1992). Unifying forces for chromosomes in mitosis. Curr. Biol.  2:569-571.
  19. Kingsbury, J. and Koshland, D. (1993). Centromere function on minichromosomes isolated from budding yeast. Mol. Biol. Cell, 4:859-870.
  20. Guacci, V., Yamamoto, A., Strunnikov, A., Kingsbury, J., Hogan, E., Meluh, P. and Koshland, D. (1993). Structure and function of chromosomes in mitosis of budding yeast.  Cold Spring Harbor Symp. Quant. Biol. 58:677-685.
  21. Strunnikov, A., Larionov, V.L. and Koshland, D. (1993). SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. 123:1635-1648.
  22. Guacci, V., Hogan, E. and Koshland, D. (1994). Chromosome condensation and sister chromatid pairing in budding yeast. J. Cell Biol. 125:517-530.
  23. Koshland, D. (1994). Mitosis: back to the basics. Cell 77:951-954.
  24. Strunnikov, A.V., Kingsbury, J. and Koshland, D. (1995). CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J. Cell Biol. 128:749-760.
  25. Saunders, W.S., Koshland, D., Eshel, D., Gibbons, I.R. and Hoyt, M.A. (1995). Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J. Cell. Biol. 128:617-624.
  26. Strunnikov, A.V., Hogan, E. and Koshland, D. (1995).SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 9:587-599.
  27. Yamamoto, A., DeWald, D.B., Boronenkov, I.V., Anderson, R.A., Emr. S.D. and Koshland, D. (1995). Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast.  Mol. Biol. Cell 6:525-539.
  28. Meluh, P. and Koshland, D.  (1995). Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein, CENP-C. Mol. Biol. Cell 6:793-807.
  29. Yamamoto, A., V. Guacci and Koshland,D. (1996). Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J. Cell Biol. 133:85-97.
  30. Yamamoto, A., V. Guacci and Koshland, D. (1996). Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol. 133:99-110.
  31. Basrai, M.A., Kingsbury, J., Koshland, D., Spencer, F. and Hieter, P. (1996). Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2838-2847.
  32. Koshland, D. and Strunnikov, A (1996). Mitotic chromosome condensation. Ann. Rev. Cell Biol. 12:305-333.
  33. Cohen-Fix, C., Peters, J.-M., Kirschner, M.W. and Koshland, D. (1996). Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC dependent degradation of the anaphase inhibitor, Pds1p. Genes Dev. 10:3081-3093.
  34. Guacci, V., Hogan, E., and Koshland, D.  (1997). Centromere position in budding yeast: evidence for anaphase A. Mol. Biol. Cell  8:957-972.
  35. Guacci, V., Koshland, D. and Strunnikov, A. (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae.  Cell 91:47-57.
  36. Cohen-Fix, O. and Koshland, D. (1997). The metaphase to anaphase transition: avoiding a mid-life crisis. Curr. Opin. Cell Biol. 9:800-806.
  37. Meluh, P. and Koshland, D. (1997). Insights into budding yeast centromere composition and assembly revealed by in vivo crosslinking. Genes Dev. 11:3401-3412.
  38. Cohen-Fix, O. and Koshland, D. (1997). The anaphase inhibitor of S. cerevisiae, Pds1p, is a mitosis specific target of the DNA damage checkpoint pathway. Proc. Natl Acad. Sci. USA, 94:14361-14366.
  39. Meluh, P.B., Yang, P., Glowczewski, L., Koshland, D. and Smith, M.M. (1998). Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 98:607-613.
  40. Hyland, K. M., Kingsbury, J., Koshland, D., and Hieter, P. (1999). Ctf19p: A novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J. Cell Biol.145:15-28.
  41. Skibbens, R. V., Corson, L. B., Koshland, D., and Hieter, P. (1999). Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev.13:307-319.
  42. Cohen-Fix, O. and Koshland, D.E. (1999). Pds1p of budding yeast has dual roles: inhibition of anaphase initiation and regulation of mitotic exit. Genes Dev.13:1950-1959.
  43. Megee, P.C. and Koshland, D. (1999). Functional assay for centromere-associated sister chromatid cohesion. Science 285:254-257.
  44. Megee, P.C. , Mistrot, C., Guacci, V. and Koshland, D. (1999). The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Molecular Cell 4:445-450.
  45. Lavoie, B.D., Tuffo, K.M., Oh, S., Koshland D. and Holm, C. (2000). Mitotic chromosome condensation requires Brn1p, the yeast homologue of barren. Mol. Biol. Cell 11:1293-1304.
  46. Koshland, D.E. and Guacci, V. (2000). Sister chromatid cohesion: the beginning of a long and beautiful relationship. Curr. Opin. Cell Biol.12:297-301.
  47. Laloraya, S., Guacci, V. and Koshland, D. (2000). Chromosomal addresses of the cohesin-component, Mcd1p. J. Cell Biol. 151:1047-1056.
  48. Hartman, T., Stead, K., Koshland, D. and Guacci, V. (2000). Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 151:613-626.
  49. Lavoie, B., Hogan, E. and Koshland D.E. (2002). In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesin. J. Cell Biol. 156:805-815.
  50. Huang, D. and Koshland, D. (2003). Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins. Genes Dev. 17:1741-1754.
  51. Milutinovich, M. and Koshland, D.E. (2003). Molecular biology. SMC complexes—wrapped up in controversy. Science 300:1101-1102.
  52. Yu, H.G. and Koshland, D. (2003). Meiotic condensing is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages. J. Cell Biol. 163:937-947.
  53. Lavoie, B.D., Hogan, E. and Koshland, D. (2004). In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev. 18:76-87.
  54. Weber, S.A., Gerton, J., Polancic, J.E., DeRisi, J.L, Koshland, D., Megee, P.C. (2004). The kinetochore is an enhancer of pericentric cohesin binding. PloS Biol. 2:E260.
  55. Glynn, E.F., Megee, P.C., Yu, H.G., Mistrot, C., Unal, E., Koshland, D.E., DeRisi, J.L. and Gerton, J.L. (2004). Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2:E259.
  56. Unal, E., Arbel-Eden, A., Sattler, U., Shroff, R., Lichten, M., Haber, J.E. and Koshland, D. (2004). DNA damage response pathway uses histone modification to assemble a double-strand break specific cohesin domain. Molecular Cell 16:991-1002.
  57. Huang, C.E., Milutinovich, M. and Koshland D. (2005). Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Phil. Trans.: Biological Sciences 360:537-542.
  58. Yu,  H.G., and Koshland D. (2005). Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell 123:397-407.
  59. Milutinovich, M., Ünal, E., Ward, C., Skibbens, R.V. and Koshland D. (2007). A multi-step pathway for the establishment of sister chromatid cohesion. PloS Genetics Jan 19;3(1):e12 [Epub ahead of print].
  60. Yu, H.G. and Koshland, D. (2007). The aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis. Journal of Cell Biology 176:911-918.  [Epub ahead of print].
  61. Ünal, E., Heidinger-Pauli, J.H.,  Koshland, D. (2007). DNA double-strand breaks trigger genome-wide sister chromatid cohesion through Eco1 (Ctf7). Science 317:245-248. (Erratum in Science 2007 318:1722.)
  62. Guacci, V. (2007). Sister chromatid cohesion: The cohesin cleavage model does not ring true. Genes to Cells12:693-708. (review)
  63. Surcel, A., Koshland, D., Ma, H. and Simpson, R.T. (2008). Cohesin interaction with centromeric minichromosomes shows a multi-complex rod-shaped structure. PloS One 3(6):e2453.
  64. Onn, I., Heidinger-Pauli, J.M., Guacci, V., Ünal, E. and Koshland, D.E. (2008). Sister chromatid cohesion: A simple concept with a complex reality. Annu. Rev. Cell Dev. Biol. 24:105-129.
  65. Heidenger-Pauli, J.M., Ünal, E., Guacci, V. and Koshland D. (2008). The Kleisin subunit of cohesin dictates damage-induced cohesion. Molecular Cell 31:47-56.
  66. Ünal, E., Heidinger-Pauli, J.M., Kim, W., Guacci, V., Onn, I., Gygi, S.P. and Koshland, D.E. (2008). A molecular determinant for the establishment of sister chromatid cohesion. Science 321:566-569.
  67. Heidinger-Pauli, J.M., Ünal, E. and Koshland, D. (2009). Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Molecular Cell 34:311-321.
  68. Martin, O.C., DeSevo, C.G., Guo, B.Z., Koshland, D.E., Dunham, M.J. and Zheng, Y. (2009). Telomere behavior in a hybrid yeast. Cell Research 19:910-912.
  69. Onn, I., Guacci, V. and Koshland D.E. (2009). The zinc finger of Eco1 enhances its acetyltransferase activity during sister chromatid cohesion. Nucleic Acids Research 37:6126-6134. [Aug 19 Epub ahead of print]. 
  70. Heidinger-Pauli, J.M., Mert, O., Davenport, C., Guacc,i V. and Koshland D. (2010). Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr Biol. 20:957-963.
  71. Heidinger-Pauli, J.M., Onn, I. and Koshland, D. (2010). Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae. Genetics. in press. May 24. [Epub ahead of print]
  72. Hoang, M.L., Tan, F.J., Lai, D.C., Celniker, S.E., Hoskins, R.A., Dunham, M.J., Zheng, Y., and Koshland, D. (2010). Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet 6, e1001228.
  73. Calahan, D., Dunham, M., Desevo, C., and Koshland, D.E. (2011). Genetic Analysis of Desiccation Tolerance in Sachharomyces cerevisiae. Genetics 189, 507–519.
  74. Guacci, V., and Koshland, D. (2011). Cohesin-independent segregation of sister chromatids in budding yeast. Mol Biol Cell.
  75. Onn, I., and Koshland, D. (2011). In vitro assembly of physiological cohesin/DNA complexes. Proc Natl Acad Sci USA.
  76. Wahba, L., Amon, J.D., Koshland, D., and Vuica-Ross, M. (2011). RNase H and Multiple RNA Biogenesis Factors Cooperate to Prevent RNA:DNA Hybrids from Generating Genome Instability. Mol Cell 44, 978–988.
  77. Tan, F.J., Hoang, M.L., and Koshland, D. (2012). DNA resection at chromosome breaks promotes genome stability by constraining non-allelic homologous recombination. PLoS Genet 8, e1002633.
  78. Wahba, L., & Koshland, D. (2013). The rs of biology: R-loops and the regulation of regulators. Molecular Cell, 50(5), 611–612. doi:10.1016/j.molcel.2013.05.024
  79. Wahba, L., Gore, S. K., & Koshland, D. (2013). The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. eLife, 2(0), e00505–e00505. doi:10.7554/eLife.00505.027
  80. Welch, A. Z., Gibney, P. A., Botstein, D., & Koshland, D. E. (2013). TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Molecular biology of the cell, 24(2), 115–128. doi:10.1091/mbc.E12-07-0524
  81. Welch, A.Z., and Koshland, D.E. (2013). A simple colony-formation assay in liquid medium, termed “tadpoling,” provides a sensitive measure of Saccharomyces cerevisiae culture viability. Yeast 30, 501–509.
  82. Eng, T., Guacci, V., and Koshland, D. (2014). ROCC, a conserved region in Cohesin's Mcd1 Subunit, is essential for the proper regulation of the maintenance of cohesion and establishment of condensation. Mol Biol Cell 25, 2351–2364.
  83. Tapia, H., and Koshland, D.E. (2014). Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24, 2758–2766.
  84. Guacci, V., Stricklin, J., Bloom, M.S., Guō, X., Bhatter, M., and Koshland, D. (2015). A novel mechanism for the establishment of sister chromatid cohesion by the ECO1 acetyltransferase. Mol Biol Cell 26, 117–133.
  85. Costantino, L., and Koshland, D. (2015). The Yin and Yang of R-loop biology. Curr Opin Cell Biol 34, 39–45.
  86. Orgil, O., Matityahu, A., Eng, T., Guacci, V., Koshland, D., and Onn, I. (2015). A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex. PLoS Genet. 11, e1005036.
  87. Tapia, H., Young, L., Fox, D., Bertozzi, C.R., and Koshland, D. (2015). Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc Natl Acad Sci USA 112, 6122–6127.
  88. Camdere, G., Guacci, V., Stricklin, J., and Koshland, D. (2015). The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering. Elife 4, e11315.
  89. Eng, T., Guacci, V., and Koshland, D. (2015). Interallelic complementation provides functional evidence for cohesin-cohesin interactions on DNA. Mol. Biol. Cell 26, 4224–4235.
  90. Costantino, L., and Koshland, D. (2015). The Yin and Yang of R-loop biology. Curr Opin Cell Biol 34, 39–45.
  91. Stigler, J., Çamdere, G.Ö., Koshland, D.E., and Greene, E.C. (2016). Single-Molecule Imaging Reveals a Collapsed Conformational State for DNA-Bound Cohesin. Cell Rep 15, 988–998.
  92. Wahba, L., Costantino, L., Tan, F.J., Zimmer, A., and Koshland, D. (2016). S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev. 30, 1327–1338.
  93. Amon, J.D., and Koshland, D. (2016). RNase H enables efficient repair of R-loop induced DNA damage. Elife 5, e20533.
  94. Winston, F., and Koshland, D. (2016). Back to the Future: Mutant Hunts Are Still the Way To Go. Genetics 203, 1007–1010.
  95. Zimmer, A.D., and Koshland, D. (2016). Differential roles of the RNases H in preventing chromosome instability. Proc. Natl. Acad. Sci. U.S.a. 113, 12220–12225. Bloom, M. S., Koshland, D., & Guacci, V. (2018). Cohesin Function in Cohesion, Condensation, and DNA Repair Is Regulated by Wpl1p via a Common Mechanism in Saccharomyces cerevisiae. Genetics, 208(1), 111–124.
  96. Boothby, T. C., Tapia, H., Brozena, A. H., Piszkiewicz, S., Smith, A. E., Giovannini, I., et al. (2017). Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation. Molecular Cell, 65(6), 975–984.e5.
  97. Robison, B., Guacci, V., & Koshland, D. (2017). A role for the Smc3 hinge domain in the maintenance of sister chromatid cohesion. Molecular Biology of the Cell, mbc.E17–08–0511.
  98. Bloom, M. S., Koshland, D., & Guacci, V. (2018). Cohesin Function in Cohesion, Condensation, and DNA Repair Is Regulated by Wpl1p via a Common Mechanism in Saccharomyces cerevisiae. Genetics, 208(1), 111–124.
  99. Costantino, L., and Koshland, D. (2018). Genome-wide Map of R-Loop-Induced Damage Reveals How a Subset of R-Loops Contributes to Genomic Instability. Mol. Cell 71, 487–497.e3.
  100. Kim, S.X., Camdere, G., Hu, X., Koshland, D., and Tapia, H. (2018). Synergy between the small intrinsically disordered protein Hsp12 and trehalose sustain viability after severe desiccation. Elife 7, 959.
  101. Çamdere, G.Ö., Carlborg, K.K., and Koshland, D. (2018). Intermediate step of cohesin’s ATPase cycle allows cohesin to entrap DNA. Proceedings of the National Academy of Sciences 4, 201807213.
  102. Guacci, V., Chatterjee, F., Robison, B., & Koshland, D. E. (2019). Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA. eLife, 8, 1998. eLife.46347.
  103. Koshland, D., & Tapia, H. (2019). Desiccation tolerance: an unusual window into stress biology. Molecular Biology of the Cell, 30(6), 737–741.
  104. Guacci, V., Chatterjee, F., Robison, B., and Koshland, D.E. (2019). Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA. Elife 8.
  105. Costantino, L., Hsieh, T.-H.S., Lamothe, R., Darzacq, X., and Koshland, D. (2020). Cohesin residency determines chromatin loop patterns. Elife 9.
  106. Lamothe, R., Costantino, L., and Koshland, D.E. (2020). The spatial regulation of condensin activity in chromosome condensation. Genes Dev.
  107. Xiang, S., and Koshland, D. (2021). Cohesin architecture and clustering in vivo. Elife 10.