MCB 110/ Fall 2014

MCB 110 PART I of III Prof Kathleen Collins

<u>Lecture</u> 1	Date F Aug 29	Topic DNA structure and recognition		
	M Sept 1	HOLIDAY		
2	W Sept 3	DNA polymerases		
3	F Sept 5	DNA packing, topology, and topoisomerases		
4	M Sept 8	The DNA replication fork and replication factors		
5	W Sept 10	DNA replication factors, continued		
6	F Sept 12	Replication origins and initiation		
7	M Sept 15	Machinery for replication origins and ends		
8	W Sept 17	DNA damage and repair		
9	F Sept 19	DNA repair mechanisms, continued		
10	M Sept 22	Homologous recombination		
11	W Sept 24	Homologous recombination, site-specific recombination		
12	F Sept 26	Transposition, retroelement mobility		
13	M Sept 29	Personalized medicine, genome engineering		
14	W Oct 1	Genome rearrangement, adaptive immunity		
EXAM	Tuesday, October 7 th	7-9pm in 2050 VLSB		

Prof. Qiang Zhou SECTION II of III: REGULATION OF GENE EXPRESSION

LEC	DATE	TOPIC			
1.	Oct. 3 (Fri)	Prokaryotic Transcription: Promoters and Polymerase			
2.	Oct. 6 (Mon)	Prokaryotic Transcriptional Regulation: Operons			
3.	Oct. 8 (Wed)	Prokaryotic Transcriptional Regulation: Two-component regulatory systems			
4.	Oct. 10 (Fri)	Eukaryotic Transcription Apparatus & Methods for Analyzing Individual and Global Gene Transcription: Part I			
5.	Oct. 13 (Mon)	Eukaryotic Transcription Apparatus & Methods for Analyzing Individual and Global Gene Transcription: Part II			
6.	Oct. 15 (Wed)	Eukaryotic Transcriptional Regulation: Chromatin and Its Impact on Transcription			
7.	Oct. 17 (Fri)	Eukaryotic Transcriptional Regulation: Polymerase Pausing and Elongation			
8.	Oct. 20 (Mon)	Eukaryotic Transcriptional Regulation: Interpreting and Integrating Upstream Signals			
9.	Oct. 22 (Wed)	RNA processing: Capping and Polyadenylation			
10.	Oct. 24 (Fri)	RNA Processing: Mechanism and Control of Splicing I			
11.	Oct. 27 (Mon)	RNA Processing: Mechanism and Control of Splicing II			
12.	Oct. 29 (Wed)	Translational Apparatus and Control: Part I			
13. Oct. 31 (Fri)		Translational Apparatus and Control: Part II			
EXAM Monday, November 3rd 8-10pm in 2050 VSLB					

MCB 110 – Third Segment

Protein Synthesis, Folding, Degradation and Targeting

- 1 Protein Synthesis and the Ribosome
 - 1A tRNAs and the Ribosome
 - 1B Translation stages: Initiation, Elongation, Termination and Recycling
 - 1C Translation Initiation and Regulation in Bacteria
 - 1D Translation Initiation and Regulation in Eukaryotes
- 2 Chaperone-mediated Protein Folding, Post-translational Modifications, and Protein Degradation
 - 2A Co and Post-translational Protein Folding
 - 2B Protein Cleavage and Covalent Modifications
 - 2C Ubiquitination and Sumoylation
 - 2D Protein Degradation
- 3 Protein Targeting and Translocation across Membranes
 - 3A Nuclear Transport
 - 3B Mitochondrial and Chloroplast Targeting
 - 3C Co-translational Translocation: Synthesis of Secretory and Membrane Proteins
- 4 Vesicular trafficking
 - 4A Methods to study cytomembranes
 - 4B Vesicle budding and targeting
 - 4C Posttranslational modifications in the ER and Golgi
 - 4D Lisosomes and endocytosis