Huntington’s Disease (HD) is inherited as an autosomal dominant trait. Affected person has an affected parent. No skipping of generations.

Huntington’s Disease (HD) is inherited as an autosomal dominant trait. Affected person has an affected parent. No skipping of generations.

Huntington’s disease (HD) is a late onset, progressive disorder of the central nervous system that affects 1 in 10,000 individuals in the U.S. The disorder usually begins to affect adults between the ages of 30-50 years old. Initial symptoms include irritability, clumsiness, depression and forgetfulness. These progress to more severe mental and physical impairment that leads to death. Folksinger Woody Guthrie, who died of the disease, was first thought to be an alcoholic and later schizophrenic, before he was properly diagnosed.

Molecular basis for Huntington’s disease

HD is caused by an increase in the number of repeats of three nucleotide bases, CAG, which translates into increases in the amino acid glutamine in the Huntington protein. The normal version of the HD gene has between 6 and 34 copies of CAG. The mutation which causes Huntington’s increases the number of repeats to 37 or more. There appears to be a correlation between the number of CAG repeats and the age of disease onset. People with more than 60 repeat can develop HD before age 20. Most people with late adult onset HD have between 37 and 52 repeats.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Triplet Repeat</th>
<th>Normal Copy</th>
<th>Copy in Disease</th>
<th>MIM/OMIM Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>frontotemporal dementia and olivopontocerebellar atrophy</td>
<td>CAG 12–34</td>
<td>40–62</td>
<td>313200</td>
<td></td>
</tr>
<tr>
<td>Huntington disease</td>
<td>CAG 6–39</td>
<td>41–81</td>
<td>164400</td>
<td></td>
</tr>
<tr>
<td>Rett's syndrome</td>
<td>CAG 6–37</td>
<td>35–121</td>
<td>143100</td>
<td></td>
</tr>
<tr>
<td>Huntington's disease</td>
<td>CAG 7–34</td>
<td>34–70</td>
<td>140540</td>
<td></td>
</tr>
<tr>
<td>Friedreich's ataxia</td>
<td>CAG 13–36</td>
<td>68–79</td>
<td>109410</td>
<td></td>
</tr>
<tr>
<td>X-linked dystonia</td>
<td>CGG 5–12</td>
<td>24–72,000</td>
<td>309730</td>
<td></td>
</tr>
<tr>
<td>X-linked dystonia</td>
<td>CAG 3–7</td>
<td>50–72,000</td>
<td>160950</td>
<td></td>
</tr>
<tr>
<td>X-linked dystonia</td>
<td>GAA 10–21</td>
<td>200–300</td>
<td>229300</td>
<td></td>
</tr>
</tbody>
</table>

A hypothetical case

An airline pilot informs his doctor that his father has just died from HD. It is conceivable that HD could impair his functioning as a pilot.

Does the airline pilot have a duty to his passengers to have the PCR test?

Does the airline have the right to know?

Does the physician have the right to inform the airline of his patient’s father?

X-linked diseases

Positions of some genes associated with X-linked inherited diseases.
Colorblindness is an recessive X-linked trait.

Trait usually expressed only in males.

Sons of carrier females have a 50% chance of being affected.

Affected males do not have affected children.

Trait skips generations.

Congenital Generalized Hypertrichosis is an X-linked dominant trait.

Daughters, but not sons, can inherit the trait from their fathers.

Daughters and sons can inherit the trait from their mothers.

The trait is present in each generation or is lost.

Preimplantation Genetic Diagnosis

Shao-Lin martial arts master Su Kong Tai Djin.

But first, *in vitro* fertilization (IVF)

Who uses IVF?

For couples that are infertile.

For couples at risk for having babies with chromosomal abnormalities and genetic diseases

Preimplantation Genetic Diagnosis (PGD)
Blastomere Isolation

After IVF, 1-2 cells, known as blastomeres, can be removed from the 8-cell embryo without doing any harm. These can be tested by PCR, and embryos lacking disease alleles transferred into the uterus.

Polar Body Sampling

To test for abnormal chromosome content or disease gene carried by mother, DNA from first polar body (or both the first and second polar bodies) can be tested.

Preimplantation Genetic Diagnosis (PGD)

Two techniques used to test blastomeres or polar bodies
1. Fluorescence in situ hybridization (FISH)
2. Polymerase chain reaction (PCR)

FISH

FISH of isolated blastomere

Color-chr.
Blue-18
Red-21
Green-13
Yellow-X
White-Y
FISH abnormal blastomeres

Trisomy 21 Triploid

Genetic Counseling

- Family history
- Order genetic tests
- Evaluate results
- Help understand and reach decisions

Who needs genetic counseling?

- Standard prenatal test abnormal
- Abnormal karyotype
- If either parent already has a child with inherited disease
- If either parent has close relative with inherited disease
- Three or more miscarriages or babies that die in infancy
- If woman is 35 or older
- Couple in at risk ethnic or racial group