Midterm reminder April 13
Covers lectures 10-18 (this includes Professor Roelink’s April 6 lecture)
Office hours this week: Tu & Th 2-4 PM
No office hours Tu, April 7
Garriga midterm review session
April 12, 5-7 PM 100 GPB

Genetic diseases and genetic screening
Reading: pp 200-202, 316

Outline
Autosomal recessive genetic diseases
Screening

Autosomal recessive genetic diseases
- inheritance patterns
- disease phenotype
- prevalence

Autosomal recessive mutations
The story of three genetic diseases
Phenylketonuria
Sickle-Cell Disease
Tay-Sachs Disease

Phenylketonuria (PKU), Sickle-Cell Disease and Tay-Sachs Disease are autosomal recessive diseases.

Disease is expressed in matings between carriers (heterozygotes).
Most affected individuals have unaffected parents.
Increased frequency with inbreeding.
Frequencies of Sickle-Cell Anemia and Tay-Sachs Disease alleles in different populations.

Sickle-Cell Disease
- 10-40% of the population in regions of equatorial Africa are carriers
- 7-10% of African Americans are carriers
- <1% of South Africans are carriers

Tay-Sachs
- 1/25 American Ashkenazi Jews are carriers
- 1/300 in the general population are carriers

Why are the frequencies of some disease alleles so high?

Explanation #1
- Heterozygote advantage

Explanation #2
- Founder effect

Hemoglobin

Major protein in red blood cells.

Hemoglobin is made of four polypeptide chains—2 alpha and 2 beta chains—and four heme-iron complexes. These complexes bind O₂.

Hemoglobin releases CO₂ and binds O₂ when CO₂ concentrations are low, i.e., in the lungs. Hb binds CO₂ and releases O₂ when CO₂ concentrations high.

A single amino acid change in the beta peptide results in sickle cell anemia

<table>
<thead>
<tr>
<th>Thr</th>
<th>Pro</th>
<th>Glu</th>
<th>Glu</th>
<th>beta² chain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...ACT C T S B G G G ... beta² gene</td>
</tr>
<tr>
<td>Codon # 4 5 6 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thr</th>
<th>Pro</th>
<th>Val</th>
<th>Glu</th>
<th>beta⁵ chain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...ACT C T S G B G G ... beta⁵ gene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thr Pro Val Glu</td>
</tr>
</tbody>
</table>

Results of RBC sickling

Breakdown of RBC anemia
- Fatigue, shortness of breath
- Jaundice

Blood vessel clogging
- Organ and joint pain
- Organ damage
- Stroke
All 50 States, DC, Puerto Rico and the Virgin Islands do a simple blood test for HbS in newborns.

Treatment is effective, and when diagnosed early, sickle cell patients can live beyond 40 years.

Carriers have an advantage in malaria-infested areas

<table>
<thead>
<tr>
<th>Genotype</th>
<th>disease</th>
<th>malaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbB/HbB</td>
<td>normal</td>
<td>susceptible</td>
</tr>
<tr>
<td>HbS/HbB</td>
<td>normal</td>
<td>resistant</td>
</tr>
</tbody>
</table>

Why is the carrier frequency so high?

Tay Sachs

Progressive disease with an onset in infancy of developmental retardation, followed by paralysis, dementia and blindness. Death occurs in the second or third year of life.

Tay-Sachs disease is caused by mutation in the hexosaminidase A gene, which removes fatty substances called gangliosides. When hexosaminidase A is lacking, gangliosides build up in neurons.

The Founder Effect

MitDNA evidence for a genetic bottleneck in the early history of the Ashkenazi Jewish population

Jewish Reproductive Genetics, 2006-35, 121-124

Tay-Sachs disease is caused by mutation in the hexosaminidase A gene, which removes fatty substances called gangliosides. When hexosaminidase A is lacking, gangliosides build up in neurons.

The Founder Effect

MitDNA evidence for a genetic bottleneck in the early history of the Ashkenazi Jewish population

Jewish Reproductive Genetics, 2006-35, 121-124

Tay-Sachs disease is caused by mutation in the hexosaminidase A gene, which removes fatty substances called gangliosides. When hexosaminidase A is lacking, gangliosides build up in neurons.
Outline

Autosomal recessive genetic diseases

Screening
- Newborn
- Prenatal

If left untreated PKU can cause severe mental retardation.

Mutations in the gene encoding phenylalanine hydroxylase cause PKU. 1/14,000 births

Phenylalanine
(essential amino acid that we get in our diet).

phenylalanine hydroxylase

Tyrosine

Mental retardation from PKU has been eliminated in the U.S.

All newborns are tested for PKU using a simple blood test that measures phenylalanine.

Infants with PKU are placed on a phenylalanine restricted diet. Later in life, after neural development is largely completed, PKU individuals can resume a normal diet.

PKU is described in your textbook on pp248-252.

States decide what genetic diseases are screened in newborns

Tandem Mass Spectrometry has the potential to test for many metabolites in newborns

Newborn screening

Infants in all 50 states tested for PKU, sickle cell disease, congenital adrenal hyperplasia and a many others
What about prenatal testing?

Ultrasound
Chorionic villus sampling (CVS)
Amniocentesis

Amniocentesis

Aneuploidy karyotype

Open neural tube defects
Alpha-fetoprotein & acetylcholinesterase

Genetic diseases
PCR

Tay Sachs Disease Testing

Carriers can be identified by a simple blood test that measures hexosaminidase A activity.

In the 1970s, the families of affected children began a program that focused on education of Jewish groups to the risk of Tay Sachs. The community was also instructed on how to seek genetic testing and counseling. Tay Sachs disease is almost never encountered today in Ashkenazi Jews.

As the genes for more genetic diseases are identified, molecular genetic approaches can be also be used to screen for many genetic diseases. In principle, 100s of genetic traits could be screened.

How many diseases?
Who should pay?
Who should get the information?