MCB 41 LECTURE NOTES PROF. MARK TANOUYE

EMBRYONIC AND ADULT STEM CELLS 1 & 2

reading: p. 334; also chapter 20 for related information (on cloning) useful website: http://stemcells.nih.gov/info/basics/basics1.asp

Also: EMBRYONIC GERM CELLS (EG Cells; egg, sperm progenitors) and CORD BLOOD STEM CELLS (from umbilical cord)

ES cells derived of embryos from IVF clinic. Donated for research purposes w/ informed consent of donors Not derived from eggs fertilized in a woman's body. Embryos 4-5 days old. Inner cell mass about 30 cells.

ICM = inner cell mass C = blastocoel cavity T = trophectoderm cell (forms placenta)

NIH stem cell website

UNDIFFERENTIATED HUMAN EMBRYONIC STEM CELLS

RED BLOOD CELL COLONY FROM HUMAN EMBRYONIC STEM CELLS

Development & Differentiation

first specialized human cells to be coaxed down a specific developmental pathway

may one day augment human blood supplies for transfusion And transplantation

USING DIFFERENT MEDIA TO CONTROL

Nestin: intermediate filament marker neural progenitor cells

DIFFERENTIATION INTO DIFFERENT TISSUES

FROM STEM CELLS: HUMAN NEURONS (red) GLIAL CELLS (green)

Transplant to Mouse Brain: neural precursors give rise to neurons (red in A) and astrocytes (red in B)

THREE ADULT CELL TYPES (PROLIFERATION)

 DIFFERENTIATED CELLS (no longer capable a. cardiac muscle, neurons b. produced during development c. differentiate, retained throughout life. 	of division)
 CELLS IN Go STAGE OF CELL CYCLE a. resume cell cycle when needed to replace cells b. skin fibroblasts, smooth muscle, endothelial cells c. epithelial cells of liver, pancreas, kidney, lung, prostate, breast (cf. cancers) 	
 ADULT STEM CELLS a. undifferentiated cells, short life, continually repla b. blood cells, epithelial cells of skin and digestive ti c. divide to daughter cells: differentiate or remain s 	iced ract tem cells

NIH website

COMPARISON: SPERMATOGENESIS vs OOGENESIS

FEMALE REPRODUCTIVE SYSTEM

MALE REPRODUCTIVE SYSTEM

Sperm production site. Sectioned seminiferous tubule, This tubule contains a swirl of the tails of forming sperm cells (blue/pink) at its centre.

STEM CELL SELF-RENEWAL

EXAMPLE: HUMAN SPERMATOGONIA

A_s spermatogonia (stem cells) continued self-renewal

A_{pr} spermatogonia (paired) destined for differentiation

renewal and commitment towards differentiation, that is, the formation of $A_{\mu\nu}$ (paired) spermatogonia, are shown. The $A_{\mu\nu}$ spermatogonia are shaded to indicate their destination towards differentiation. When stem cell divisions are asymmetrical, there is a special category of A, spermatogonia that are destined to produce $A_{\mu\nu}$ spermatogonia. This situation is indicated with stripes.

