Simple reflexes such as stretch reflex require coordinated contraction and relaxation of different muscle groups

Categories of Muscle Based on Direction of Motion

- **Flexors** → reduce the angle of joints
- **Extensors** → increase the angle of joints

Categories of Muscle Based on Movement

- **Agonist** → muscle that serves to move the joint in the same direction as the studied muscle
- **Antagonist** → muscle that moves the joint in the opposite direction
Muscle Spindles

- Small encapsulated sensory receptors that have a spindle-like shape and are located within the fleshy part of the muscle
- In parallel with the muscle fibers
- Does not contribute to the overall contractile force
- Mechanoreceptors are activated by stretch of the central region
 - Due to stretch of the whole muscle (including intrafusal fibers)
 - Due to contraction of the polar regions of the intrafusal fibers

Muscle Spindles

Organization

<table>
<thead>
<tr>
<th>2 kinds of intrafusal muscle fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nuclear bag fibers (2-3)</td>
</tr>
<tr>
<td>• Dynamic</td>
</tr>
<tr>
<td>• Static</td>
</tr>
<tr>
<td>• Nuclear chain fibers (~5)</td>
</tr>
<tr>
<td>• Static</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 types of sensory fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ia (primary) - central region of all intrafusal fibers</td>
</tr>
<tr>
<td>• I (secondary) - adjacent to the central region of static nuclear bag fibers and nuclear chain fibers</td>
</tr>
</tbody>
</table>

- Intrafusal fibers stretched (loading the spindle) → Sensory ending stretched, increase firing
- Muscle fibers lengths (stretched) → Sensory ending stretched, increase firing
- Muscle fiber shortens → Spindle unloaded, decrease firing
Muscle Spindles

Organization

Gamma motor neurons innervate the intrafusal muscle fibers.

- Activation of gamma neurons
 - Shortening of the polar regions of the intrafusal fibers
 - Stretches the noncontractile center regions
 - Increase firing of the sensory endings

Therefore, the gamma motor neurons provide a mechanism for adjusting the sensitivity of the muscle spindles.

2 types of motor fibers

- Static gamma motor neuron – innervate both static bag and chain fibers
- Dynamic gamma motor neuron – innervate only dynamic bag fibers

Gamma motor neurons: Static and Dynamic Responses

- Ia sensory fiber response:
 - Stretch alone: small dynamic response to muscle stretch, a moderate increase in steady-state firing.
 - Static gamma motor neuron stimulated: steady-state response increase, dynamic response decrease.
 - Dynamic gamma motor neuron stimulated: dynamic response markedly enhanced, steady-state response gradually returns to original level.

Increase in activity of **dynamic** gamma motor neurons increase the dynamic sensitivity of the type Ia endings but have no influence on the type II endings.

Increase in activity of **static** gamma motor neurons increase the tonic level of activity in both the type Ia and II endings, decrease the dynamic sensitivity of type Ia endings.
Activation of gamma MN during active muscle contraction enables the muscle spindles to continue sensing changes in muscle length.

- Activation of the gamma motor neurons leads to contraction of the ends of the fibers, which stretch the central regions.
- This allows the spindle to respond to changes in muscle length over a wide variety of lengths. I.e. adjusts the spindle sensitivity.
- The activation of alpha and gamma motor neurons together enable the muscle spindle to respond during long contractions.
- Alpha and gamma MN are activated together during voluntary movements (alpha-gamma coactivation).

The Alpha-Gamma Co-activation

- Descending Pathways → Increase in gamma MN firing
- Increase in Ia firing → Increase in alpha MN firing
- Increased Muscle Contraction

The diagram illustrates the process of muscle contraction and the role of gamma MN firing in maintaining spindle sensitivity during active contractions.
Golgi Tendon Organ

- Located at the junction between muscle fibers and tendon
- Connected in series with the skeletal muscle fibers
- Tendon Organs are most sensitive to muscle tension

- Innervated by a single Ib axon, which demyelinates when entering the capsule. There is branches into many small endings which intertwine with the collagen fibers.
- Stretching of the tendon organ (when the muscle contracts) straightens the collagen fibers, compressing the Ib branches and causing the cell to fire
- The average level of activity in a population of tendon organs in a muscle gives a good idea of the force done by the muscle

Muscle spindles: sensitive to changes in muscle length.
Golgi tendon organs: sensitive to changes in muscle tension.
Summary of Sensory Fibers

Ia
- Goes from the chain and bag nuclear fibers (static and dynamic) of the muscle spindle to the spinal cord.
- Sensitive to muscle length and rate of change of length

II
- Goes from the chain and bag nuclear fibers (static) of the muscle spindle to the spinal cord.
- Sensitive to muscle length

Ib
- Goes from the Golgi Tendon Organs to the spinal cord.
- Sensitive to muscle tension

And others that respond to painful stimuli, temperature, etc
Monosynaptic
Serves to maintain the muscle tone
Feedback system keeping the muscles around a set length

Mechanism: When the muscle is stretched, this results in the stretching of the intrafusal muscle fibers in the muscle spindle. As a result, the Ia endings are stretched and increase their firing rate. They make excitatory connections onto the alpha MN innervating the same muscle and also onto those innervating synergistic muscles. Thus, the muscle contracts and its length is reduced.

Ia fibers can also synapse onto inhibitory interneurons and cause the relaxation of the antagonist muscles. (polysynaptic component)

It involves a contraction that takes place when the muscle gets stretched.

Polysynaptic
Protective Reflex
The limb is quickly withdrawn from a painful stimulus, usually by the simultaneous contraction of all flexor muscles in the limb

Mechanism: When there is a painful stimulus, the sensory signal excites the motor neurons that innervate flexor muscles of the stimulated limb and inhibits MN that innervate the extensor muscles of the limb (reciprocal innervation)

Also, the reflex can produce an opposite effect in the contralateral limb to enhance postural support. (cross-extension reflex)
Functions of the Ia inhibitory interneurons

The Ia interneuron allows higher centers to coordinate opposing muscles at a joint through a single command.

1) Mediates reciprocal innervation in stretch reflex circuits.

2) Receives input from cortical descending pathway. A single descending signal that activates one set of muscles automatically leads to relaxation of the antagonists.

3) Other descending pathway provides excitatory or inhibitory connections to Ia neurons (i.e. greater inhibition allowing contraction of opposing muscles to occur).

Functions of the Renshaw Cells

- inhibitory interneuron
- Inputs: Excited by collaterals of the axons of motor neurons (leads to presynaptic inhibition); descending pathways
- Effects:
 - Inhibition of large transient movements
 - Dis-inhibition of the antagonist muscle
- Central modulation regulates the sensitivity of MN to afferent input