Autoimmunity

Robert Beatty MCB150

Immune Tolerance

- ◆Tolerance of self is a hallmark of adaptive immune response.
- ◆B cell tolerance vs. T cell tolerance.

What is Autoimmunity?

- Autoimmunity is an immune response to self antigens that results in disease.
- The immune response to self is a result of a breakdown in immune tolerance.

B cell Tolerance No T cell help

Autoreactive B cells that enter lymph node should fail to get costimulation from T cells and therefore never enter primary follicles.

©1999 Elsevier Science/Garland Publishing

Maintenance of T cell tolerance

Clonal deletion

negative selection in the thymus, deletion in the periphery.

◆ Sequestration of antigens

- Inside nucleus
- Inaccessible to immune system (brain, eye, testes)

◆Immunological ignorance

- self antigens at low density on APCs
- or T cells do not cross barrier.

Maintenance of T cell tolerance

♦Anergy

Lack of co-stimulation or second signal to T cells results in anergy.

♦ Suppression

- T-cell cytokine mediated suppression.
- Regulatory T cells. CD4+CD25+ CTLA4+ T cells that produce suppressive cytokines.

Inducing Autoimmunity OR Breaking of self-tolerance

Injury (inflammation)

or

Infection

"Viral Trigger" is term for virus infection leading to autoimmune response.

Inducing Autoimmunity Disruptionof cell Infection of Binding of pathoger to self protein Molecular mimicry Mechanism Superantigen or tissue barrier ntigen-presenting elease of sequestered Pathogen acts as Production of Polyclonal activation Effect Release of inflammato carrier to allow anti-self response of autoreactive T cells self antigen; activation cross-reactive nediators, notably IFN of nontolerized cells ntibodies or T cells Rheumatic feve Sympathetic ? Interstitial nephrit ? SLE Example ? SLE ? Diabetes Rheumatoid arthr Multiple sclerosi ... Figure 13-26 Immunobiology, 6/e, (© Garland Science 2005

Breaking of self-tolerance

- ♦Release of sequestered antigens: Tissue damage by infection may allow access of T cells and B cells to sequestered antigens.
- Antigenic (molecular) mimicry is when similarity between foreign antigen and self protein results in cross-reactivity.

Antigenic Mimicry

TABLE 20-3 MOLECULAR MIMICRY BETWEEN PROTEINS OF INFECTIOUS ORGANISMS AND HUMAN HOST PROTEINS

Protein*	Residue [†]	Sequence ¹	
Human cytomegalovirus IE2	79	PDPLGRPDED	
HLA-DR molecule	60	VTELGRPDAE	
Poliovirus VP2	70	STTKESRGTT	
Acetylcholine receptor	176	TVIKESRGTK	
Papilloma virus E2	76	SLHLESLKDS	
Insulin receptor	66	VYGLESLKDL	
Rabies virus glycoprotein	147	TKESLVIIS	
Insulin receptor	764	NKESLVISE	
Klebsiella pneumoniae nitrogenase	186	SRQTDREDE	
HLA-B27 molecule	70	KAQTDREDL	
Adenovirus 12 E1B	384	LRRGMFRPSQCN	
α-Gliadin	206	LGQGSFRPSQQN	
Human immunodeficiency virus p24	160	GVETTTPS	
Human IgG constant region	466	GVETTTPS	
Measles virus P3	13	LECIRALK	
Corticotropin	18	LECIRACK	
Measles virus P3	31	EISDNLGQE	
Myelin basic protein	61	EISFKLGQE	
*In each pair, the human protein is listed second. The prote	ins in each pair have been shown to e	nhibit immunologic cross-reactivity.	
*Each number indicates the position in the intact protein of			
Amino acid residues are indicated by single-letter code. Ide	entical residues are shown in blue.		
SOURCE: Adapted from MBA Oldstone, 1987, Cell 50:819.			

Breaking of self-tolerance

- ◆Inappropriate expression of Class II MHC.
 - Abnormal expression of class II molecules can lead to presentation of self antigens that were not presented in thymus or periphery.
 - "non-APC" becomes APC with inflammation.

Classification of autoimmune diseases

Autoantibody or T cell mediated autoimmune diseases Autoantibody mediated diseases

Autoimmune hemolytic anemia antibodies to rbc antigens

◆IgM abs against CHO on rbc cell surface binds

- causes C' activation and lysis
- phagocytic cell clearance

Autoimmune hemolytic anemia

- \bullet IgM abs thought to be from infection
 - Mycoplasma or Epstein Barr virus thought to be associated.
 - Can be transient as long as you have infection.
 - Unclear how exactly triggered.

Antibodies to rbc antigens

Antibodies to acetyl choline receptors block muscle activation and trigger Inflammation that causes the destruction of the nerve/muscle junctions resulting in paralysis.

Goodpasture's Syndrome

- Autoantibodies to type IV collagen and noncollagenous basement membrane.
- Antibodies bind in lung and kidney causing inflammation and destruction.
- ◆Increased risk with smoking.

Autoantibodies to surface receptors Blocking autoantibodies

✦Hashimoto's thyroiditis =hypothyroid

✦Blocking autoantibodies inhibit thyroid function.

Rheumatoid Arthritis Immune Complex Disease

- ◆Autoantibodies to ubiquitous antigens
 - IgM against IgG is called "rheumatoid factor"
 - IgG against glucose-6-phosphate isomerase.
- Primary disease manifestation
 - immune complexes get deposited in joints and trigger inflammatory response through complement activation and binding FcγRs on neutrophils and macrophages triggering degranulation.

Systemic lupus erythematosus (SLE) Immune complex disease

- ◆Chronic IgG production to intracellular proteins.
- ◆Disease symptoms are widespread and varied.
 - kidney damage, lung disease, skin, eye, etc.

Systemic lupus erythematosus (SLE)

- ◆ Autoantibodies against nucleoprotein particles;
 - Nucleosome
 - Spliceosome.
 - Ribonucleoprotein complex.
- Th response to one epitope can drive auto-antibody production to many epitopes in a particle.

T cell Mediated Autoimmune Diseases Multiple sclerosis (MS)

- ◆T cell responses to myelin basic protein (MBP).
- The destruction of the myelin sheath results in neurological symptoms.

Multiple sclerosis (MS)

- The cause remains unknown, but autoimmunity possibly triggered during an inflammatory response to a viral infection is implicated.
- MBP has high sequence homology with measles protein and Hepatitis B virus protein. Antigenic mimicry?

Insulin-dependent (type I) diabetes mellitus (IDDM)

- Selective destruction of insulin-producing β cells in the islets of Langerhans of the pancreas.
- Autoantibodies and self-reactive T cells have been found in human patients with IDDM.

Diabetes

- CD8+ CTLs are thought to be responsible for the actual killing of the islet cells.
- ◆Autoantibodies are present in IDDM.
 - However, animal models of IDDM have shown that these autoantibodies alone cannot cause IDDM.

TABLE 20-2 EXPERIMENTAL ANIMAL MODELS OF AUTOIMMUNE DISEASES

Animal model	Possible human disease counterpart	Inducing antigen	Disease transferred by T cells
- miniar moder		0 0	07 1 000
	Spontaneous autoim	mune disease	
Nonobese diabetic (NOD) mouse	Insulin-dependent diabetes mellitus (IDDM)	Unknown	Yes
(NZB \times NZW) F_1 mouse	Systemic lupus erythematosus (SLE)	Unknown	Yes
Obese-strain chicken	Hashimoto's thyroiditis	Thyroglobulin	Yes
	Experimentally induced au	toimmune disease*	
Experimental autoimmune myasthenia gravis (EAMG)	Myasthenia gravis	Acetylcholine receptor	Yes
Experimental autoimmune encephalomyelitis (EAE)	Multiple sclerosis (MS)	Myelin basic protein (MBP); proteolipid protein (PLP)	Yes
Autoimmune arthritis (AA)	Rheumatoid arthritis	M. tuberculosis (proteoglycans)	Yes
Experimental autoimmune thyroiditis (EAT)	Hashimoto's thyroiditis	Thyroglobulin	Yes

*These diseases can be induced by injecting appropriate animals with the indicated antigen in complete Freund's adjuvant. Except for autoimmune arthritis, the antigens used correspond to the self-antigens associated with the human-disease counterpart. Rheumatoid arthritis involves reaction to proteoglycans, which are

self-antigens associated with connective tissue.

Experimental autoimmune encephalomyelitis (EAE)

Mouse model for multiple sclerosis

Injection of normal mice or rats with MBP in complete Freund's adjuvant can induce EAE.

EAE Mouse Model for MS

MBP-specific CD4+T cell clones can be isolated from mice with EAE and injection into normal animals to cause disease.

EAE Model for MS

- Immunodominant epitopes of MBP have been identified.
- Different MHC haplotypes have one or two MBP peptides that are encephalitogenic, (i.e. capable of inducing disease).

NOD (non-obese diabetic) mice Mouse model of IDDM

- NOD mice spontaneously develop insulitis and "diabetes-like" disease between 2 and 4 months of age.
- NOD mice injected with T_{reg} cells delay developing diabetes.
- These T_{reg} (CD4+ CD25+) cells can suppress by making--IL-10, TGF-β.

Mouse Model of Lupus

- ◆F1 cross of NZ Black **X** NZ White mice
 - Mice spontaneously develop immune complex disease similar to SLE. Abs to DNA, nucleoproteins.
 - Genetically complex heterozygous model of disease.
 - But used to identify lupus-associated genes e.g. Nba.2

<figure><figure><figure>

MHC Risk for Diabetes (IDDM)

The relative risk associated with having the DR3/DR4 combination is 25:1

Susceptibility Factors Gender

 Increased risk associated with gender.
– e.g. Female to male ratio for SLE 10:1 MS 5:1

Hashimoto's thyroiditis 4:1 But IDDM is 1:1 and AS is 0.3:1. Why??

Susceptibility Factors Gender SLE (Lupus) 10:1 female:male

- ♦ Humans with SLE have increased estrogen
- Mouse/humans -lupus during pregnancy
- ◆Mouse models-difference in estrogen receptors

Do increased hormones or stress exacerbate disease?

Susceptibility Environmental factors

- Smoking has been associated with Goodpasture's syndrome.
 - Potentially the damage to lung basement membrane helps trigger autoimmune response.
- ◆Pollution, occupational exposure, etc.

Susceptibility Factors Immune regulation genes

- Increased risk associated with changes in expression of immune regulation genes.
- Decreased expression of Fas, FasL, assoc with SLE.
- Decreased amount of Complement proteins (C1, C2, C4) has been assoc with SLE.

Treatment of Autoimmune Diseases

- ♦ Pharmacotherapy
 - Anti-inflammatories--steroids or NSAIDS.
 - Other specific drugs for symptoms e.g. insulin, thyroid hormones
- ◆Immunotherapy
 - Targeted antibodies to lyse autoreactive B cells.
 - Block co-stimulation or CAMs.
 - Multiple sclerosis beta-interferon and synthetic altered peptides of MBP block T cell activation.