Inflammation and Chemokines

Robert Beatty MCB150

Initiation of Acute Inflammation

◆<u>Vasodilation</u>

- Increase in the diameter of blood vessels.
- ◆<u>Increased capillary permeability</u>
 - Allows influx of fluid and cells into tissue.
- ◆ Influx of inflammatory cells
 - Increased permeability and more CAMs are induced by CKs to allow for neutrophil/ monocyte/ lymphocyte extravasation.

How do Pathogens directly initiate inflammation?

- Activation through recognition of invariant parts of pathogens (LPS, peptidoglycan, mannans, flagellin).
- ◆<u>P</u>athogen <u>A</u>ssociated <u>M</u>olecular <u>P</u>atterns (PAMPs) are invariant parts of pathogens.
- PAMPs (especially on bacteria) bind to pattern recognition receptors (PRRs) on macrophages and dendritic cells.

Activation of TLRs Innate Differentiation of Self vs Nonself Produces cytokines/chemokines---> inflammation.

 Activation of APCs produces cytokines, increased MHC, and costimulatory molecules.

♦Part of the "DANGER SIGNAL"

Inflammed endothelial =high expression of CAMs

- Inflammed" endothelial tissue is found in the blood vessels near the site of inflammation in tissue.
- CAM expression is different at site of inflammation than in HEV of lymph node.

Trafficking of Different T cell Populations

- ◆<u>Naive cells</u> some CAMs primarily travel through to LNs.
- ◆ <u>Activated Effector T cells</u> have more CAMs and leave bloodstream for LNs and tissues.
- <u>Memory</u> T cells express specific adhesion molecules.

Chemokines Chemokine = chemoattractant cytokine •Four sub-types distinguished by positions of N-terminal cysteines: C, CC, CXC and CXXXC. •Net positive charge leads to association with proteoglycans in tissues. •Receptors are seven transmembrane domain G-protein coupled molecules.

Extravsation Cells leaving the bloodstream

- Inflammatory mediators act on the endothelium to increase the expression of CAMs.
 - The cells must adhere strongly enough not to be swept away.
- HEV or inflamed endothelium express the right combination of vascular addressins
 - e.g. E, P, selectin. GlyCAM-1, ICAM 1,2,3. MadCAM1.

Mediators of acute inflammation

Inflammatory cells

Neutrophils and macrophages

- These phagocytic cells scavenge and clean up area.
- ♦ Release mediators which kill pathogens.
- ◆Activate immune system.

Mediators of acute inflammation Role of Neutrophils

Mediators released from Neutrophils

- ♦ Oxygen radicals.
- Enzymes: proteases, phospholipases, collagenases.
- ♦ Lysozyme splits the proteoglycan cell wall of bacteria.
- These anti-microbial enzymes and reactive molecules are used inside in phagolysosomes. but can be released from granules to kill extracellular microorganisms and cause tissue damage.

Mediators of acute inflammation Role of Neutrophils

Glycogen

Secondary

azurophilic

granule

Primary

Short lived cells. Chemoattractants : IL-8, C3a, C5a, lipid mediators.

Multilobe

nucleus

Lysosome

Phagocytosis

opsonization

mostly

Acti	ivated macro	ophages
Secrete pro- inflammatory	TABLE 2-7 Some factors secreted by activated macrophages	
	Factor	Function
	Interleukin 1 (IL-1)	Promotes inflammatory responses and fever
	Interleukin 6 (IL-6) TNF-α	Promote innate immunity and elimination of pathogens
	Complement proteins	Promote inflammatory response and elimination of pathogens
	Hydrolytic enzymes	Promote inflammatory response
	Interferon alpha (IFN-α)	Activates cellular genes, resulting in the production of proteins that confer an antiviral state on the cell
	 Tumor necrosis factor (TNF-α) 	Kills tumor cells
	GM-CSF G-CSF M-CSF	Promote inducible hematopoiesis

Mediators of acute inflammation Complement

By-products of complement activation.

C3a, C4a, and C5a activate inflammation.

C3a, C4a, and C5a are called anaphylatoxins for their ability to induce "anaphylaxis".

Mediators of acute inflammation Plasma Enzyme Activators

Produced in response to blood vessel injury. Kinin System

- ♦ Bradykinin causes vasodilation, C5--> C5a, C5b. Clotting Factors
- Thrombin and Fibrin are part of clotting cascade but also activate inflammation.

Mediators of acute inflammation Prostaglandins and Leukotrienes

Prostaglandins are products of Cyclooxygenase pathway EXAMPLE Prostaglandin E2 (PGE2) activate neutrophils and cause increased vascular permeability

Leukotrienes are products of Lipoxygenase pathway

◆LTA4 and LTB4 ---> Neutrophil chemotaxis.

◆LTC4, D4, E4 --> bronchial smooth muscle contraction.

Outcome of Acute Inflammation

- Short term and local acute inflammation is beneficial to attract immune response, activate clotting mechanisms, and trigger tissue repair.
- Clearance of antigen by neutrophils and macrophages will limit inflammation.
- However, prolonged local activation or systemic inflammation will result in disease.

Systemic Acute Inflammation IL-1 IL-6, TNF-α

Large amounts of IL-1 IL-6, TNF- α can cause many disseminated effects.

Some good such as fever, increased metabolism.

Some bad such as in massive fluid loss and shock.

Systemic Acute Inflammation Acute Phase Response (APR) APR is activated by IL-1 IL-6, TNF-α if: localized inflammatory responses do not contain the injury or infection. systemic activation of inflammation (through systemic infection or toxins).

Stress and the Immune Response Immune 🔁 Central Nervous System

- ♦CNS can activate APR in the liver.
 - IL-1, IL-6, TNF-α, Oncostatin-M, Leukemia inhibitory factor, produced by CNS can ALL activate production of acute phase proteins.
- ◆ Acute phase proteins and cytokines can activate hormonal pathways and CNS.

Effects of "Stress" on Immune Response

- Stress hormones (e.g. glucocorticoids) can be made by the CNS and have immunosuppressive effects (inhibit Th1).
- Stress hormones and cytokines made by CNS can act on endothelium to initiate inflammatory cascade.

Effects of "Stress" on Immune Response "Systemic Inflammation"

Chronic Stress vs Chronic Inflammation

- Acute stress can activate acute inflammation.
 "Chronic stress" = chronic acute inflammation (can lead to activation of innate and suppression of adaptive).
- Chronic inflammation" usually a result of adaptive immune response.
 - characterized by Th1 cells and macrophages making IFN- γ and TNF- $\alpha.$

Adaptive Immune Responses Leading to Chronic Inflammation

- ◆Infectious agent persisting.
- ◆Autoimmunity.
- ◆Cancer. Tissue damage or an adaptive immune response to tumor can result in chronic inflammation in area surrounding tumor.
- ◆Delayed type hypersensitivity (DTH).