• The normal control of cell division
 - The cell cycle
 - Molecular signals
 - Machinery
 - Checkpoints that regulate passage through the cell cycle
• How cancer arises from defects in cell cycle control
 - General cellular phenotypes associated with all cancers
 - The clonal nature of tumors
 - Mutations in protooncogenes and tumor suppressor genes
• Comprehensive example describing the progression from low-grade brain tumors to aggressive brain cancer

The normal control of cell division

The cell cycle

Molecular signals

Machinery

Checkpoints that regulate passage through the cell cycle

How cancer arises from defects in cell cycle control

General cellular phenotypes associated with all cancers

The clonal nature of tumors

Mutations in protooncogenes and tumor suppressor genes

Comprehensive example describing the progression from low-grade brain tumors to aggressive brain cancer

The cell cycle is the series of events that occurs between one mitotic division and the next

G₁: Cell grows in size, prepares for DNA replication

S: DNA replication

G₂: Cell prepares for division

M: Mitosis
 1. Breakdown of nuclear membrane
 2. Condensation of chromosomes
 3. Attachment of chromosomes to mitotic spindles

The molecular basis of cell cycle control was worked out using complementary approaches in different systems…

Growth and division are carefully coordinated

2 successive cell cycles in the budding yeast *Saccharomyces cerevisiae*
2001 Nobel Prize in Medicine: CELL CYCLE!!

Lee Hartwell
Sea Urchin Eggs

Paul Nurse
Fission Yeast

Tim Hunt
Budding Yeast

Genetic identification of molecules that regulate the cell cycle in all eukaryotes

Biochemical discovery and identification of cyclin proteins

Genetic experiments in budding yeast revealed the regulatory molecules that control cell cycle progression

Budding yeast cell cycle stages can be recognized by cell morphology (bud size) and nuclear division

Yeast grow as haploid or diploid organisms
Can identify recessive mutations in haploids and carry out complementation analysis in diploids

“Conditional” mutations allow you to study regulators of essential processes, like the cell cycle

Conditional mutations allow the encoded protein to function under one condition - e.g., lower temperature - while inhibiting its function under another condition, in this case, high temperature.

Such mutations are special alleles, often caused by missense mutations that destabilize the protein or its interaction with other proteins

Because these alleles are rarer than general loss-of-function alleles, they are most often isolated in organisms that enable rapid high-throughput screens, such as budding and fission yeast, bacteria, or phage.

Isolation of temperature-sensitive mutations in essential yeast genes (including cell cycle genes)

Haploid cells treated with mutagen

Dilute and spread single cells on nutrient plate at 22°C (permissive temperature).

Allow cells to grow into colonies.

Imprint colonies onto two plates.

Grow at 22°C
Temperature-sensitive mutant

Grow at 36°C
Temperature-sensitive mutations in cell cycle control genes cause all cells to arrest at a specific stage. At the permissive temperature (22˚C), cells grow asynchronously, and all stages of the cell cycle can be observed. At the restrictive temperature (36˚C), cells arrest at a particular stage of the cell cycle. Here, they are all “large budded cells.”

Temperature-sensitive mutations in cell cycle control genes cause all cells to arrest at a specific stage. At the permissive temperature (22˚C), cells grow asynchronously, and all stages of the cell cycle can be observed. At the restrictive temperature (36˚C), cells arrest at a particular stage of the cell cycle. Here, they are all “large budded cells.”

Epistasis experiments with double mutants make it possible to order the activities of cell cycle genes. The budding yeast CDC28 gene encodes an essential cell cycle regulator that controls the first key step in the cell cycle. The protein encoded by CDC28 is a Cyclin-Dependent Kinase (CDK). These kinases control multiple cell cycle steps, and depend on cyclin proteins for their function. Biochemical experiments had previously identified “Mitosis Promoting Factor” = MPF.

Biochemical experiments had previously identified “Mitosis Promoting Factor” = MPF. Cell fusion experiments in the 1970s showed that a factor in mitotic cells can induce premature chromosome condensation in an interphase cell.
Biochemical experiments had previously identified “Mitosis Promoting Factor” = MPF

Biochemical purification of MPF revealed that it is a protein kinase with 2 subunits:

1) CDK1 = cyclin-dependent kinase 1
 = budding yeast Cdc28 = fission yeast Cdc2
 • Induces mitosis by phosphorylating specific downstream targets on serine and threonine

2) cyclin B
 = budding yeast Clb2 = fission yeast Cdc13
 • regulatory subunit that activates cdk1
 • abundance oscillates during the cell cycle

CDKs control the activity of other proteins by phosphorylating them

Phosphorylation of target proteins can change the behavior of large cellular complexes, such as the nuclear envelope

Phosphorylation of transcription factors (or, in this case, an inhibitor of a transcription factor) can also lead to activation or repression of other genes

This example shows how CDK4 and CDK2 control the G1→S transition in mammalian cells by activating DNA synthesis
Uncontrolled proliferation results from mutations in the Rb gene, (the E2F inhibitor shown in the previous slide), resulting in retinoblastoma.

The cell cycle is driven by protein synthesis and degradation.

Cyclin B induces its own destruction via the Anaphase Promoting Complex (APC).

CDK activity is controlled by:
1) positive regulation by cyclin protein levels
2) inhibitory phosphorylation of the kinase subunit

Multiple levels of regulation allow more flexible control of the cell cycle and provide inputs for checkpoint control.
Numerous “checkpoints” exist to ensure that the cell cycle does not proceed under potentially dangerous conditions.

Checkpoints involve...

1. A mechanism to detect errors or problems in a cellular process (e.g., chromosome integrity, spindle attachment)
2. A reversible signal that inhibits cell cycle progression

Checkpoints slow down or arrest the cell cycle to enable cells to fix damage before proceeding

- Checkpoint mechanisms may be dispensable for a given cell division, but they are critical for the fidelity of ongoing cell division.
- If a cell is unable to fix the damage, it may undergo apoptosis
- Mutations in checkpoint genes have been linked to cancer predisposition and progression

The G₁→S transition is inhibited by DNA damage

- p53: transcription factor that induces expression of DNA repair genes and CDK inhibitor p21
- p53 pathway activated by ionizing radiation or UV light (causing DNA damage) during G1 phase delays entry into S phase
- DNA is repaired before the cell cycle continues.
- If DNA is badly damaged, cells may commit suicide (programmed cell death, or apoptosis).

The G₂→M transition is also inhibited by DNA damage

- Radiation damage to DNA
- Signal
- Inhibition of CDK activity
- CDC2→CyclinB
- G₂
- Cell can pause and make repairs.

The Metaphase→Anaphase transition is inhibited when one or more chromosomes fails to attach to the mitotic spindle

- Signal
- Inhibition of CDK activity
- CDC2→CyclinB
- Metaphase
- Pause between metaphase and anaphase
- Cell can pause and reattach chromosome.
The cell cycle is also regulated by extrinsic factors that enable cells to respond to their environments.

Cancer results when cells no longer regulate their growth and division appropriately.