MCB 142 Discussion

Hana Lee

December 9, 2008

1 Announcements

The final exam will take place in Pauly Ballroom, from 8 to 11 AM on Friday, December 19. Prof. Slatkin will hold his review on in Dwinelle 155, from 3 to 5 PM on Thursday, December 18.

I will be holding extra office hours next week in Stanley 482 from noon to 2 PM on Thursday, December 18.

Prof. Slatkin has made corrections to his lecture notes, so please be sure that you have the latest version when studying for the final.

2 Substitution Rates

- What is the probability of fixation of a new neutral mutation?
- What is the overall rate of fixation of neutral mutations?
- What is the average time to fixation of a new neutral mutation?
- What is the difference between a mutation and a substitution?
- If the substitution rate of replacement mutations is less than the substitution rate of silent mutations for a given gene, what can you conclude?
- What is the significance of the fact that K_R will have different values for different protein domains?
- The substitution rate in pseudogenes is similar to K_S . What can you conclude?
- How does K_S lead to the molecular clock theory?

3 Gene Trees

- What is coalescence time?
- What is an outgroup, and why do you need it to generate gene trees?

- What are two methods of picking gene trees?
- How can you estimate coalescence time?
- What are trans-species polymorphisms?

4 Practice Problems

4.1

If $\mu=2\times10^{-9}$ per site per year, how many substitutions would you expect to see if you compared 200 neutral sites in humans and mice, which diverged 8×10^7 years ago?

4.2

																\mathbf{C}	
II	A	\mathbf{C}	A	G	\mathbf{T}	A	\mathbf{C}	\mathbf{T}	A	\mathbf{T}	G	\mathbf{T}	\mathbf{C}	G	\mathbf{T}	\mathbf{C}	${\rm T}$
III	A	G	G	G	\mathbf{C}	A	\mathbf{T}	\mathbf{T}	A	A	A	\mathbf{T}	\mathbf{C}	G	\mathbf{T}	\mathbf{C}	G
N	T	\mathbf{C}	G	\mathbf{T}	\mathbf{T}	\mathbf{C}	\mathbf{C}	G	G	${\rm T}$	G	G	A	A	G	A	${\rm T}$
Infer	N T C G T T C C G G T G G A A G A T Infer the best tree using parsimony. Infer the best tree using distance.																

4.3

You sample a group of 900 adults at the β -globin gene and find 560 AA, 320 AS and 20 SS individuals. Assume the frequency of A is at equilibrium under selection and that the newborns are in their HW frequencies, and estimate the survival rate of AA and SS individuals relative to AS individuals.