The recombinant DNA controversy

"Those who disregard the past are bound to repeat it"

George Santayana

The restriction/modification system: a bacterial pathway for defence against viruses

J. Bacteriol. 64(4): 557–569 (1952)

A NONEBERIDATORY HOST-INDUCED VARIATION OF BACTERIAL VIRUSES

S. E. ICESA and MARY L. KENAI
Department of Bacteriology, University of Illinois, Urbana, Illinois

Received for publication April 15, 1952

One of virology’s most generally valid rules is that the properties of a virus particle are unaffected by the host in which they grow. Host adaptation and these reactions, the apparent exceptions, have been explained today by selective reproduction of virus mutants in new hosts or in new times. In analyzing the relations between certain phages and certain mutants of their bacterial hosts, we have encountered a novel situation: the genotype of the host in which a virus reproduces affects the phenotype of the new virus. This phenotypic change suppresses the vital role of the virus to reproduce in certain hosts but not in others. It is a transmittable change, in the sense that one cycle of growth in a suitable host returns the virus to the original form. Both the growth ability of the modified virus and, in some cases, its production from normal virus are controlled in part by the physiology of the host cell. The present paper describes these findings and discusses their general implications. Other instances of host-controlled phenotype changes in bacteriophages have recently been discovered (Hois and Wegge, 1952).

Werner Arber (1965): met-depleted E. coli don’t generate “modified” phage → CH₃ of phage DNA!
A significant breakthrough came in 1970 when the first of two papers from Smith's laboratory described an enzyme, endonuclease R, that was able to cleave bacteriophage T7 DNA into specific fragments (2). This was the first type II restriction enzyme, the sort that now populates our freezers, because it recognizes specific sequences and also gives rise to very specific cleavage. Smith had been looking for an enzyme that might be involved in site-specific recombination in Haemophilus influenzae and thought at first that endonuclease R might be his long-sought quarry. With Tom Kelly, he went on to determine the DNA sequence recognized by endonuclease R and reported it as GTY RAC (11). This sequence seemed too short for a recombination enzyme, and during correspondence with his close friend Nathans, who ran the neighboring laboratory but was away on sabbatical, it became clear that this enzyme might have very practical uses for the analysis of DNA.

R. Roberts – PNAS 2005

Radioautogram of 14C-labeled SV40 DNA cleaved with endonuclease R showing 11 distinct fragments. Figure 3 from: Danna, K. & Nathans, D. (1971) Proc. Natl. Acad. Sci. USA 68, 2913-2917

The question, quite simply, concerned the wisdom of transplanting SV40 genes, conceivably coding for tumor production, into a bacterium that not only lacks that capacity to begin with, but which lives in virtually every human gut on the planet.

Berg: "My God! – people said – 'You cannot put SV40 into E. coli!' I think I was upset by the criticism at first, but then I went out and started to talk about the problem with a lot of people. … I realized that I'd been wrong many, many times before in predicting the outcome of an experiment, and that if I was wrong about my assessment of the risk in this experiment, then the consequences were not something that I would want to live with."

Berg cancelled the experiment.
Science, September 1973: letter to the NAS from participants at Gordon conference on nucleic acids.

“We are writing … on behalf of a number of scientists to communicate a matter of deep concern. We presently have the technical ability to join together, covalently, DNA molecules from diverse sources. This technique could be used, for example, to combine DNA from animal viruses with bacterial DNA. In this way, new kinds of hybrid plasmids or viruses, with biological activity of unpredictable nature, may eventually be created. These experiments offer exciting and interesting potential, both for advancing knowledge of fundamental biological processes, and for alleviation of human health problems. Certain such hybrid molecules may prove hazardous to laboratory workers and to the public. Although no hazard has yet been established, prudence suggests that the potential hazard be seriously considered.”

Maxine Singer (Carnegie) Dieter Söll (Yale)

September 1974 – a moratorium?

New plasmids: novel antibiotic resistance markers into E. coli; Xenopus and Drosophila genomic DNA into E. coli.

Norton Zinder: “If we had any guts at all, we’d tell people to not do these experiments!”

Sept. ’74 – Feb’ 75

“Until the potential hazards of such recombinant DNA molecules have been better evaluated or until adequate methods are developed for preventing their spread, scientists throughout the world join with the members of this committee in voluntarily deferring the following experiments” – cloning new antibiotic resistance genes in currently naïve hosts and cloning fragments of oncoviral genomes into bacterial plasmids.

“an epidemic of cancer”?
Asilomar conference, February 1975

Paul Berg, David Baltimore, Sydney Brenner, Mike Bishop, Don Brown, Ron Davis, James Watson, Phil Sharp, Herb Boyer, Joshua Lederberg + 150 more people

The measures

1. Moratorium lifted.
2. Experiments will proceed under two levels of containment, biological (use weakened host cell), and physical, the level of which will be gauged by the level of risk presented by the organism created (minimal, low, moderate, high):
 1. Stringent, commonsense cleanliness (P1)
 2. Similar to surgical operating theatre (P2)
 3. Giant isolator (P3)
 4. Comparable to what one uses in biological warfare research (P4)

Where to draw the cutoff line, idea #1

Invertebrates (including flies)	Stringent, commonsense cleanliness (P1)
Vertebrates	Similar to surgical operating theatre (P2)
	Giant isolator (P3)
	Comparable to what one uses in biological warfare research (P4)

Where to draw the cutoff line, idea #2

Invertebrates and cold-blooded vertebrates (including frogs)	Stringent, commonsense cleanliness (P1)
Warm-blooded vertebrates	Similar to surgical operating theatre (P2)
	Giant isolator (P3)
	Comparable to what one uses in biological warfare research (P4)

Enter the sceptics

Robert Sinsheimer (CalTech):
- The dangers of “shotgunning” – evolutionary jumping? – creation of chimeras with completely unforeseen new properties?
- Prokaryote-to-eukatyote gene transfer?
- Use of E. coli as a host is potentially dangerous
Genomic library:

RNA splicing removes introns

- Exons – sequences found in a gene’s DNA and mature mRNA (expressed regions)
- Introns – sequences found in DNA but not in mRNA (intervening regions)
- Some eukaryotic genes have many introns

Dystrophin gene underlying Duchenne muscular dystrophy (DMD) is an extreme example of introns

Spliced Segments at the 5’ Terminus of Adenovirus 2 Late mRNA
Susan M. Berget, Claire Moore, and Phillip A. Sharp
Proceedings of the National Academy of Sciences USA, Volume 74, 1977, pages 3171-3175

Also:
Louise Chow, Richard Gelinas, Tom Broker, and Richard Roberts
An amazing sequence arrangement at the 5 ends of adenovirus 2 messenger RNA, Cell 12: 18, 1977
How RNA processing splices out introns and adjoins adjacent exons

(a) Short sequences dictate where splicing occurs.

(b) Two sequential cuts remove the intron.

![Fig. 8.16](image1)

• Splicing is catalyzed by spliceosomes
 – Ribozymes
 – RNA molecules that act as enzymes
 – Ensures that all splicing reactions take place in concert

![Fig. 8.17](image2)

What seems to have been disregarded completely is that we are dealing here much more with an ethical problem than one in public health, and that the principal question to be answered is whether we have the right to put an additional fearful load on generations that are not yet born... You can stop splitting the atom; you can stop visiting the moon... But you cannot recall a new form of life. Once you have constructed a viable E. coli cell carrying a plasmid DNA into which a piece of eukaryotic DNA has been spliced, it will survive you and your children and your children's children. An irreversible attack on the biosphere is something so unheard of, so unthinkable to previous generations, that I could only wish that mine had not been guilty of. The hybridization of Prometheus with Herodotus is bound to give evil results. ... My generation... has been the first to engage, under the leadership of exact sciences, in a destructive colonial war against nature. The future will curse us for it.

Enter the public, part 1

June 8, 1976: “Biohazards at Harvard: scientists will create new life forms – but how safe will they be?”

Monomorium pharoahis

John Lear Recombinant DNA: the Untold Story
“Frankenstein monsters from Harvard Yard”

Mayor Alfred Vellucci: “They may come up with a disease that can’t be cured – even a monster! Is this the answer to Dr. Frankenstein’s dream?”

→ an open meeting of the Cambridge City Council, June 13, 1976

“Why didn’t someone advise the mayor of Cambridge and the CCC what was going on at Harvard?”

Resolution: ban all recombinant DNA research in the city, whether public or privately financed, for two years.

→ Establish Cambridge Experimentation Review Board. City Manager Sullivan chose to name an ERB consisting entirely of nonscientists.

Not only Cambridge

City ordinances requiring uniform compliance with city-specified controls on working with recombinant DNA:
Princeton, Emeryville, Berkeley (Sept. 77), Amherst, etc etc.

Enter the public, part 2

The opening session of a three-day forum in March 1977, sponsored by the National Academy of Sciences, … was disrupted by a citizens’ group, The People’s Business Commission, led by activist Jeremy Rifkin, whose members, chanting “We Will Not Be Cloned,” draped across the platform a banner with the caption, “We Will Create the Perfect Race.”

The severe adverse events that have occurred in the subsequent 30 years of nonstop cloning of all imaginable sorts of DNA into E. coli vectors

Genetically modified plants
It’s what’s for dinner

“Evidently, most Americans are unaware of the extent to which crops derived from biotechnology have entered the marketplace. When consumers were asked how much processed food has genetically modified (GM) ingredients, only 14% responded with the correct answer (over 50% of processed foods have GM ingredients). Similarly, when asked whether or not they have eaten GM foods, 62% said no, they had not, while only 19% said that they had. With more than 60% of processed foods containing GM ingredients, it is highly probable that most people have eaten them at some time.”

“Is yeast a living organism?”

“Yes”:

US 75%
Austria 58%
Denmark 90%
Greece 50%
Spain 46%

“Only GM plants have genes”

“Yes”:

US 45%
Canada 52%
Denmark 44%
Holland 51%

“By eating a genetically modified fruit, a person's genes can be changed”

“Yes”:

US 61%
Canada 62%
Holland 74%
Italy 58%

Approximately 1.4 billion people, 25% of the world’s population, receive insufficient food to meet daily requirements. Even with the heavy use of various pesticides, approximately 50% of the world’s food crops are destroyed in the field or in storage.

Levetin and McMahon Plants and Society

“Green revolution” – Norman Borlaug

Dmitry Mor
Help – 1922
Three fundamental differences between "engineering" plants by traditional breeding and transgenic technology

1. Breeding is a rendez-vous within the same species, or closely related species.
2. Meiosis (HR) is an ordered exchange of genetic material, not random shuffling.
3. GM accesses portions of the genome that are not subject to Darwinian selection. "A plant is no more likely to acquire the ability of secrete a bacterial toxin, than a breed of dogs is likely to grow an extra eye, or a goat is likely to sprout an elephant's trunk. Yet these are just the kinds of monstrosities that today’s genetic engineers would aspire to create."

B. Tokar Redesigning life? p. 5

Bt: the non-pesticide pesticide

- A bacterial disease of silkworms discovered in 1902 was eventually attributed to a bacterium, *Bacillus thuringiensis*
- The insecticidal properties of the bacterium are due to its synthesis of crystal inclusion (Cry) proteins, aka insecticidal crystal protein
- The bacteria themselves have been used as a spray insecticide for over 40 years

A bad gut feeling

1. In the bacterial spore, the ICP crystals are inactive and, therefore, innocuous
2. A butterfly larva, a beetle, or a fly larva eats some of the bacterial spores.
3. The crystals denature into endotoxins in the alkaline pH (> 8.0) of the insect midgut. In the acidic midgut of invertebrates, or of mammals, this either does not happen, or the endotoxins are rapidly degraded – this accounts for tier 1 of the safety of Bt ICPs.
4. The denatured, activated endotoxins, then bind to receptors on insect midgut epithelial cells, enter the cells, form a pore, and the cells lyse. The endotoxins do not bind to mammalian gastrointestinal epithelium – this accounts for tier 2 of their safety.
Safe

“The information from the acute toxicity/pathogenicity studies on Bt strains has supported the assessment that the Bt microorganisms are not pathogenic to, or toxic to, mammals. The lack of adverse effects in toxicity tests for the entire preparation suggests that the protein components of the microorganism and fermentation residues are not toxic to mammals. It is reasonable to conclude from these findings that the ICPs, the major source of the insecticidal activity in Bt preparations, have not been implicated in mammalian toxicity.”

What do you think you just ate?

Microbial Bt use on US crops, 2000-01:
Crop % treated with Bt
Almonds 18
Cabbage 60
Celery 40
Bell peppers 42
Strawberries 41

1996

Enter the transgene

Crown gall tumor

Gene of interest

Tumor production
Napalm synthesis
TOLNA
Tolquare
Napalm utilization
Origin of replication
Microparticle bombardment

The European corn borer, *Ostrinia nubilalis*, meets its match

Pest-tailored defence

The *Bacillus thuringiensis* genome codes for a number of ICPs, each with a particular target family spectrum (in other words, some ICPs work against *Lepidoptera*, others against *Diptera*, etc).

An important aspect of GM crop engineering is the use, for each particular plant species, of those particular ICP genes that are toxic against those specific insect families that use that plant as food. For example, corn is made transgenic with a particular ICP that is active against *Lepidoptera*.

http://www.bioteach.ubc.ca/Bioengineering/btcorn/

Pest-tailored defence

The *Bacillus thuringiensis* genome codes for a number of ICPs, each with a particular target family spectrum (in other words, some ICPs work against *Lepidoptera*, others against *Diptera*, etc).

An important aspect of GM crop engineering is the use, for each particular plant species, of those particular ICP genes that are toxic against those specific insect families that use that plant as food. For example, corn is made transgenic with a particular ICP that is active against *Lepidoptera*.

The cotton bollworm, *Helicoverpa zea*, and Bollgard

Total acreage planted with Bt-transgenic cotton in US in 2001: 5,800,000 acres

Resistance in the insect?

What if there develops a “superpest”?

The IRM (insect resistance management) program:

Mandated “refuge” in which non-transgenic (i.e., non-Bt) plants are grown to support Bt-susceptible insect pests, which will then mate randomly with and dilute the resistance.

Assuming a resistance allele frequency of 5×10^{-2}, a 500:1 ratio of susceptible-to-resistant insects is the goal. For cotton, 5 acres of non-GM plants have to coexist with 95 acres of GM plants.
Le roi est mort, vive le roi:
poor monarch butterflies?

• Sears *ibid* 11937

“...If a single plant species were to be voted the most popular by scientists and laymen alike, it would
be *Oryza sativa*. Rice, the world's most important cereal crop for human consumption, is
the food staple of more than 3 billion people, many of them desperately poor.”

World population: 6,379,157,361

Rice is the major staple food for hundreds of millions of people. It is generally consumed in its milled form
with outer layers (pericarp, tegmen and aleurone layers) removed. The main reason for milling is to
remove the oil-rich aleurone layer, which turns rancid upon storage, especially in tropical and subtropical
areas. As a result, the edible part of rice grains consists of the endosperm, filled with starch granules
and protein bodies, but it lacks several essential nutrients for the maintenance of health, such as
carotenoids exhibiting provitamin A-activity. Thus, reliance on rice as a primary food staple contributes
to vitamin A deficiency, a serious public health problem in at least 26 countries including highly
populated areas of Asia, Africa and Latin America

"Vitamin A deficiency causes symptoms ranging from night blindness to those of xerophthalmia and keratomalacia, leading to total blindness."

Science, Vol 287, 303-305

"Globally, 3 million preschool-aged children have visible eye damage due to a vitamin A deficiency. Annually, an estimated 250,000 to 500,000 preschool children go blind from this deficiency and approximately two-thirds of these children die within months of going blind. The estimates of the subclinical prevalence of vitamin A deficiency range between 100 and 250 million."

J. Nutr. 132:491S-494S, 2002

The Problem ctd.

"Milled rice is normally white, being devoid of β-carotene and other colored phytochemicals. Plant breeders have searched various rice collections for colored grains, but no germ plasm has been found that makes carotenoids in its endosperm (the edible part of the grain that is left after milling). Rice plants do have the genetic machinery to make carotenoids, as these are found in leaves, but several of the carotenoid pathway enzymes are not expressed in rice endosperm."

“Germ plasm” collection

= collection of seeds, or other cell material, from naturally occurring, or otherwise interesting variants of a particular plant species.
For example, in England, at the John Innes Centre, there is a germplasm collection for wheat:
Triticum - 9513 accessions. UK holdings 520 cultivars and 782 breeders lines. Bread wheat types 7971 accessions including 1797 named varieties, 2135 breeders lines, 3658 landraces or selections from landraces. Durum types 200 accessions including 89 named cultivars, 49 breeders lines and 45 landraces or selections from landraces.

Farewell, alleles

“Genetic erosion has accelerated since the introduction of high-yielding varieties during the Green Revolution of the 1960s. In 1959, farmers in Sri Lanka grew over 2,000 traditional varieties of rice. Today, that number has been reduced to 5.”
Levetin and McMahon *Plants and Society*

Risks of genetic uniformity

• Cheetah

• Irish potato famine

Geranylgeranyl diphosphate → Phytoene synthase (daffodil) → Phytoene → Phytoene desaturase (*Erwinia*) → Lycopene → Lycopene cyclase (daffodil) → β-carotene

Narcissus pseudonarcissus
"Genetically Engineered ‘Golden Rice’ is Fool’s Gold"

Greenpeace Statement
February 9, 2001

Genetically engineered “Golden Rice” containing provitamin A will not solve the problem of malnutrition in developing countries according to Greenpeace. The Genetic Engineering (GE) industry claims vitamin A rice could save thousands of children from blindness and millions of malnourished people from vitamin A deficiency (VAD) related diseases. But a simple calculation based on the product developers’ own figures show an adult would have to eat at least twelve times the normal intake of 300 grams to get the daily recommended amount of provitamin A.(1)

Syngenta, one of the world’s leading genetic engineering companies and pesticide producers, which owns many patents on the “Golden Rice”, claims a single month of marketing delay of “Golden Rice” would cause 50,000 children to go blind.(2)

Greenpeace calculations show however, that an adult would have to eat at least 3.7 kilos of dry weight rice, i.e. around 9 kilos of cooked rice, to satisfy his/her daily need of vitamin A from “Golden Rice”. In other words, a normal daily intake of 300 gram of rice would, at best, provide 8% percent of the vitamin A needed daily. A breast-feeding woman would have to eat at least 6.3 kilos in dry weight, converting to nearly 18 kilos of cooked rice per day.

http://www.biotech-info.net/fools_gold.html
The Golden Rice 2 reported here has up to 37 g/g carotenoid of which 31 g/g is β-carotene. This increase in total carotenoid and proportion of β-carotene over the original Golden Rice promises a greater impact on vitamin A deficiency and related health issues. A value of 30 g/g (25 g/g β-carotene), however, is used here for calculations of impact for vitamin A deficiency, this number being chosen at this early stage as a moderate prediction of future performance. Definitive statements on the benefit of Golden Rice for the alleviation of vitamin A deficiency cannot be made. The vitamin A delivered and its impact on the body depends on several unquantified factors, including β-carotene uptake and conversion to vitamin A, as well as the amount of rice consumed by the individual. These factors are under rigorous investigation at present but for the time being only estimates are available. The symptoms and effects of vitamin A deficiency are most dramatic in children. Therefore, for the purpose of this estimate we have used the US recommended dietary allowance (RDA) for 1- to 3-year-old children (300 µg vitamin A). It would also be reasonable to assume that an individual receives at least some vitamin A from the current diet. Based on a retinol equivalency ratio for β-carotene of 12:1 (ref. 24), 50% of the children’s RDA is delivered by 72 g of dry Golden Rice 2. This is likely to be an underestimate because β-carotene may prove to be more bioavailable from rice, a comparatively simple food matrix, than it is from fruits and vegetables upon which the equivalency ratio is based. A typical child’s portion is about 60 g of rice and more than one portion is frequently consumed per day in regions where rice is a staple food.

“Mirage' of GM's golden promise”
Alex Kirby, BBC News, Feb. 04
“Golden rice may prove part of the answer to vitamin A deficiency, though not the comprehensive solution it seemed to be. But it would be an answer that came with a hefty price-tag: the persistent concerns about the safety of GM technology to human health and to wild species.”