Office hours
3-4pm Wednesdays
304A Stanley Hall

Simulation/theory
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Fig. 1 Number of false positives expected in a whole genome
scan for a given threshold of lod score, Z score or pointwise P
value. Solid line represents asymptotic expectation for a perfect
genetic map, based on the theory described in the Box 1. Sym-
bols represent results for 100 sib pairs obtained from 100,000
simulations using genetic maps with markers spaced every 0.1
M (circles), every 1 cM (squares), and every 10 cM (triangles).
The genome is assumed to consist of 23 chromosomes, with
total length 3450 cM. Note the close correspondence between
the asymptotic theory and the 0.1 cM simulation. The dotted line
indicates the 5% genome-wide significance level
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Quantitative trait linkage test
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What if...

Magnitude of
spread within
group has not
changed.
Locus effect is
weaker.
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Correct interpretation:

¢ | Difference

between S
and C at this
locus has a
causal role in
blood

it pressure
variation, but

caH  Fzs, F2s, Fzs, swr effectis

parent CiCat ClSat SISat parent
marker marker marker modest.

16 118 120

ES

Systolic BY (mmHg)

Correct interpretation:

“Effect of having an S allele”
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Correct interpretation:

“Effect of having an S allele”

g ¥

@ Most loci
£, underlying
5:; . N human
H disease look
’ like this.

i

T T T T T
C3H F2’s, F2’s, F2’s, SWR
parent C/Cat C/Sat S/S at parent
marker marker marker

LOD score

Complex traits

(one family, mouse model)
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Complex traits

//' Just reporting significance of
goodness of fit.
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LOD score

Complex traits

Genetic differences at both loci affect the trait

// (one family, mouse model)
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Complex traits

Each locus responsible for half?
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Complex traits

Each locus responsible for half? Depends on the model.
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(one family, mouse model)
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Genetic control of susceptibility to infection with
Mycobacterium tuberculosis in mice

Complex traits
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Genetic control of susceptibility to infection with
Mycobacterium tuberculosis in mice
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Complex traits

If 5 loci, each responsible for a fifth? 10 loci? ...

The more loci, the smaller the effects and the
harder to detect.

Complex traits

One common result of a linkage study is no
significant linkage anywhere.

Genetic complexity is the rule; simple 1-
or 2-locus models are the exception




We haven't talked about
humans lately...

With model organisms, can always study a
single cross/family with lots of progeny, so
better statistical power to detect weak loci.

And less chance of locus heterogeneity.

Distributions

Distributions

Heritability in exptal organisms

/ Genetically identical

H Genetically different

®

Heritability in exptal organisms

/ Genetically identical

H Genetically different

systlc bood presaure, men Hy
Which population has the bigger variance?

A. Red
B. Green
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Heritability in exptal organisms

/ Genetically identical

H Genetically different
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Why is the green curve taller?

A. There are more mice in the green population

B. More mice in the green population have high blood pressure
C. Fewer differences between mice in the green population

D. Less environmental error/noise in the green population




Heritability in exptal organisms

/ Genetically identical

H adds Genetically different
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Why is the green curve taller?

There are more mice in the green population

More mice in the green population have high blood pressure
Fewer differences between mice in the green population
Less environmental error/noise in the green population
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Heritability in exptal organisms

(blood pressure) (blood cholesterol)
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Trait 1 Trait 2

Green = genetically identical, red = genetically different
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Heritability in exptal organisms
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Trait 1 Trait 2

Green = genetically identical, red = genetically different

Which trait is more likely to be controlled by polymorphisms
between the mice in the red population?

A. Trait 1

B. Trait 2

Heritability in exptal organisms
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Heritability in exptal organisms
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“How much of the trait difference between genetically
different individuals is due to polymorphisms?”

Heritability in exptal organisms
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Heritability in exptal organisms

Trait 1 ' ) Tra:;t 2
Green = genetically identical, red = genetically different
Which trait has a higher heritability?

A. Trait1
B. Trait 2
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What is (the square of) this quantity?
A. Environmental variance

B. Total variance

C. Genetic variance

D. Population variance

Why h2?

“Are DNA differences controlling my trait?”
Otherwise, why bother with genetic mapping?

Heritability in humans: MZ twins
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Heritability in humans: MZ twins
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Heritability in humans: MZ twins
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Heritability in humans: MZ twins
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Heritability in humans: MZ twins
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Heritability in humans: MZ twins
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Analysis of variance (ANOVA)
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Heritability in humans: MZ twins

The fraction of the total variance
that is attributable to differences 2= > %
between pairs (i.e. is genetic). of
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Another approach: MZ and DZ
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h2= 2[0,2(DZ) - 6,2 (MZ)]

environment only

Another approach: MZ and DZ
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Another approach: MZ and DZ
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h2= 2[0,XD2) - 6,2 (M2)]

DZ twins are half as dissimilar as two unrelated people

Another approach: MZ and DZ
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THE GENETICS OF ADDICTIONS:
UNCOVERING THE GENES.

Heritability in humans: MZ and DZ




Heritability in humans: MZ and DZ
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THE GENETICS OF ADDICTIONS:
UNCOVERING THE GENES

Adoptee studies

Rates of alcoholism in adopted males

Biological parent #in sample % a:“:xp)'he(jlz""s
Alcoholic mother 89 39.4 A qualitative
argument for
Alcoholic father 42 28.6 genetic
contribution
Non-alcoholic
mother 723 13.6
Non-alcoholic
ather 1029 15.5
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