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Language: Karin Stromswold
(Rutgers University, Department of Psychology, New Brunswick)
Dan Geschwind, Mare Feldman-Discussants

Genetics of psychosis: David Porteous
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David Cox, Bob Knight-Discussants
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Dad phase unknown
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What single r value best explains the data?

Nomal
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Gonotype for marker

For this, you need to search r’s.
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Oops: a numerical mistake (thanks
to Jonathan for detective work)
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In real life this correction does matter...
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family 1: 10 meioses, 1 (or 9) apparent recombinants
family 2: 10 meioses, 4 (or 6) apparent recombinants
family 3: 10 meioses, 3 (or 7) apparent recombinants
family 4: 10 meioses, 3 (or 7) apparent recombinants
total LOD = LOD(family 1) + LOD(family 2) + LOD(family 3) + LOD(family 4)

Using only one phase

Accounting for both phases
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Locus heterogeneity

age of onset

Table 1. Lod scores for linkage of breast cancer to D17574, chromosome
17q21. For each family, M is the mean age of diagnosis of breast cancer.
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Coins

r = intrinsic probability of coming up heads (bias)
Odds = P(your flips | r)
i P(your flips | r = 0.5)
= (1) » 1
0. 5total #fips)

Odds ratio of
model that coin
is biased,
relative to null

Coins

r = intrinsic probability of coming up heads (bias)
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The analogy again

Testing lots of markers for linkage to a trait is
analogous to having lots of students, each
flipping a coin.

The search for the coin’s bias parameter is
analogous to the search for recombination
distance between markers and disease locus.
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The analogy again

Testing lots of markers for linkage to a trait is
analogous to having lots of students, each
flipping a coin.

The search for the coin’s bias parameter is
analogous to the search for recombination
distance between markers and disease locus.
Each student is analogous to a marker.
Each coin flip is analogous to a family member
in pedigree.
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Multiple testing, shown
another way

1. Simulate thousands of markers, inherited
from parents to progeny.

2. Assign some family members to have a
disease, others not.

3. Test for linkage between disease and
markers, knowing there is none.

E. Lander and L. Kruglyak, Nature Genetics 11:241, 1995
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Fig. 2 Simulated genome scan with no trait loci segregating. Chromosomal size is
proportional to genetic length, taken from ref. 33. Multipoint lod scores were com-
puted as described™.
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Fig. 2 Simulated genome scan with no trait loci segregating. Chromosomal size is
proportional to genetic length, taken from ref. 33. Multipoint lod scores were com-
puted as described™.
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Every
marker is
analogous
to a student
flipping

A real world scenario

You have invested a bolus of research money in a linkage mapping
study of a genetic disease segregating in families. For each family
member, you do genotyping at a bunch of markers.

When you finally run the linkage calculation, the strongest marker gives
aLOD of 2. You desperately want to believe this is significant.

You simulate a fake trait with no genetic control 1000 times.
You find that in 433 of these simulations, the fake trait had a LOD > 2.

This means that in your real data, the probability of your precious linkage
peak being a false positive is 433/1000 = 0.433.

If you spent more money and time to follow this up, it could be a
complete waste. Essential to know.

Simulation/theory

Expected number
of false positives

Fig. 1 Number of false positives expected in a whole genome

scan for a given threshold of lod score, Z score or pointwise P
value. Solid line represents asymptotic expectation for a perfect
genetic map, based on the theory described in the Box 1. Sym-
bols represent results for 100 sib pairs obtained from 100,
simulations using genetic maps with markers spaced every 0.1
M (circles), every 1 cM (squares), and every 10 cM (triangles).
The genome is assumed to consist of 23 chromosomes, with
total length 3450 cM. Note the close correspondence between
the asymptotic theory and the 0.1 cM simulation. The dotted line
indicates the 5% genome-wide significance level.




Simulation/theory

Simulate 1000
times, ask how
frequently you
get a peak over
a certain
threshold.

Expected number
of false positives

0 1 2 3 4 5 LODscore

Fig. 1 Number of falss posiives expected in a whole genome
for a given threshold of lod score, Z score or pointwise P
Vaue, Sol ne represents asymptotic expectation for a perfect
genetic map, based on the theory described in the Box 1. Sym-
bols represent results for 100 sib pairs obtained from 100,000
simulations using genetic maps with markers spaced every 0.1
oM (cirles), every 1 M (squares), and every 10 oM (tiangles).
e genome is assumed to consist of 23 chromosomes, with
lﬂla] length 3450 cM. Note the close correspondence between
the asymptotic theory and the 0.1 cM simulation. The dotted line
indicates the 5% genome-wide significance level.

Simulation/theory
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scan
value. Solid line represents asymptotic expectation for a perfect
genetic map, based on the theory described in the Box 1. Sym-
t rosuts for 100 & pair obtained from 100,000
simulations using genetic maps with markers spaced every 0.1
oM (circles), every 1 cM (squares), and every 10 cM (viangles).
e genome is assumed to consist of 23 chromosomes, with
o length 3450 cM. Note the close correspondence between
the asymptotic theory and the 0.1 cM simulation. The dotted line
indicates the 5% genome-wide significance level.
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Simulation/theory

Expected number
of false positives

0 1 2 3 4 5 LODscore

Fig. 1 Number of falss posiives expected in a whole genome
for a given threshold of lod score, Z score or pointwise P
Vaue, Sol ne represents asymptotic expectation for a perfect
genetic map, based on the theory described in the Box 1. Sym-
bols represent results for 100 sib pairs obtained from 100,000
simulations using genetic maps with markers spaced every 0.1
oM (cirles), every 1 M (squares), and every 10 oM (tiangles).
e genome is assumed to consist of 23 chromosomes, with
lﬂla] length 3450 cM. Note the close correspondence between
the asymptotic theory and the 0.1 cM simulation. The dotted line
indicates the 5% genome-wide significance level.
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Fig. 1 Number of als posiives expected in a whole genome
for a given threshold of lod score, Z score or pointwise P
Vaue, Soi ne represents asymptotic expectation for a perfect
genetic map, based on the theory described in the Box 1. Sym-
it results for 100 sib pairs obtained from 100,000
simulations using genetic maps with markers spaced every 0.1
oM (cirle), every 1 cM (squares), and every 10 oM (tiangles).
e genome is assumed to consist of 23 chromosomes, with
lﬂla] length 3450 cM. Note the close correspondence between
the asymptotic theory and the 0.1 cM simulation. The dotted line
indicates the 5% genome-wide significance level.




More markers = more tests =
more chance for spurious high
linkage score.

More markers = more tests =
more chance for spurious high
linkage score.

Not true when you add individuals
(patients)! Always improves results.

Multiple testing in genetics
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Novel Locus at 13pTel-13q12.13
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Marker density matters
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is >50 cM away, will get no
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Marker density matters

hromosome

But if the only marker you test
is >50 cM away, will get no
linkage.

So a mapping experiment is a
delicate balance between too
much testing and not
enough...

Candidate gene approach:
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Mapping a candidate gene (MAMYB 10) for red flesh and foliage
colour in apple

David Chagné*!, Charmaine M Carlisle!, Céline Blond", Richard K Volz?,
Claire ] Whitworth?, Nnadozie C Oraguzie?, Ross N Crowhurst’,

Andrew C Allan®, Richard V Espley”, Roger P Hellens? and Susan E Gardiner!

Candidate gene approach:

apple pigment
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Candidate gene approach

Hypothesize that causal variant will be in
known pigment gene or regulator. NOT
randomly chosen markers genome-wide.
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Mapping a candidate gene (MAMYB 10) for red flesh and foliage
colour in apple
David Chagné*!, Charmaine M Carlisle!, Céline Blond", Richard K Volz?,
Claire rth?, Nnadozie C Oraguzie?, Ross N Crowhurst’,

Andrew C Allan®, Richard V Espley”, Roger P Hellens? and Susan E Gardiner!




Candidate gene approach

Parents Progeny Parents
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Mapping a candidate gene (MAMYB 10) for red flesh and foliage
colour in apple

David Chagné*!, Charmaine M Carlisle!, Céline Blond!, Richard K Volz?,
Claire ] Whitworth?, Nnadozie C Oraguzie?, Ross N Crowhurst’,

Andrew C Allan®, Richard V Espley”, Roger P Hellens? and Susan E Gardiner!

Candidate gene approach

Parents Progeny Parents

1 1
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I { o 1

1

Red progeny have Mapping a candidate gene (MJMYB10) for red flesh and foliage
colour in apple
RFLP pattern like David Chagné*!, Charmaine M Carlisl!, Celine Blond!, Richard K Volz?,
Claire | Whitworth?, Nnadozie C Oraguzie?, Ross N Crowhurst’,
red parent Andrew C Allan®, Richard V Espley®, Roger P Hellens* and Susan E Gardiner'

Candidate gene approach

Parents Progeny Parents
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Unpigmented progen Mapping a candidate gene (MAMYB 10) for red flesh and foliage
Pig progeny colour in apple
have RFLP pattern like David Chagné*!, Charmaine M Carlisle’, Céline Blond!, Richard K Volz?,

. Claire ] Whitworth?, Nnadozie C Oraguzie?, Ross N Crowhurst’,
unpigmented parent Andrew C Allan®, Richard V Espley®, Roger P Hellens* and Susan E Gardiner'

But if you can beat
multiple testing, why not
do the whole genome...




Testing for linkage doesn’t
always mean counting
recombinants.

Back to week 4

(b) A dinybrid cros:
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7 |(@)aa B- [white)
a8 B6jaa Bb) (1)aa bb,
ab Bbjaa bb

Fig. 3.12

Qualitative but polygenic

Fig. 3.12

(b) A dinybrid cross invoiving complementary gene action

AB 9 ‘A- B~{purple)

45 ARG oaaBl (-5

w coluace| | | |(haaoh
Two loci.

Need one dominant allele at each
locus to get phenotype.

A simulated cross: test one locus

aaBB

AaBb O inter-mate

Flower color | - - -

Genotype at
marker close to A

locus

Efmf.._

Two loci.

Need one
dominant allele
at each locus to
get phenotype.
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A simulated cross: test one locus

A simulated cross: test one locus

2aBB. AAbb. aaBB
i i i i
AaBb Omter-ma«e oo v AaBb Omter-ma«e o
Two loci. Two loci.

‘ ‘ ‘ ‘ ‘ ‘ Need one ‘ ‘ ‘ ‘ ‘ ‘ Need one
dominant allele dominant allele
at each locus to at each locus to

N s Y A get phenotype. N s Y A get phenotype.
AABb AaBb aaBb AaBB aaBB Aabb AABb AaBb aaBb AaBB aaBB Aabb
Flower color Flower color - -
Genotype at Genotype at
marker close to A marker close to A
locus locus

A simulated cross: test one locus

AAbb

2aBB.

O

AaBb O inter-mate

T 1
N Yy B B I

AABb AaBb aaBb AaBB aaBB  Aabb

Flower color

Genotype at
marker close to A

locus

i i

Two loci.

Need one
dominant allele
at each locus to
get phenotype.

Purple
flowers
result from
AA or Aa.

No need to count recombinants

AAbb 22BB.

AaBb O inter-mate

Two loci.

Need one
dominant allele

at each locus to
OdooOoOoo-godg get phenotype.
AABb AaBb aaBb AaBB aaBB  Aabb
Flower color - - -
purple | white
Top 3 1
Genotype at allele
marker close to A Bottom |2 °

locus
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AAbb

2aBB.

No need to count recombinants

No need to count recombinants

AAbb aaBB
P P
AaBb Omter-ma«e :-:A-Tj- o AaBb Omter-ma«e :-:A-Tj- D=
Two loci. Two loci.
T T Somnant alle T T Somnant alle
OdooOoOoo-godg Sershanonne. N s Y A Sershanonne.
AABb AaBb aaBb AaBB aaBB  Aabb AABb AaBb aaBb AaBB aaBB Aabb
x2=3(0-Ep NOT
Flower color - - E Flower color - - complete co-
______________ inheritance.
purple | white purple | white
Top. 3 1 Top. 3 1
Genotype at allele Genotype at allele
marker close to A Bottom |2 ® marker close to A Bottom |2 ®
locus locus
13 ”
A weak locus
P
| =_zipem Many traits—cancers, cleft palate,
Because A locus by itself is not the B high blood fit thi
whole story, studying it in isolation gives o 19 00d pressure—ii IS
only weak statistical significance. dominantalle descr|pt|0n_
get phenotype.
2 =2(0-Ep
E
purple | white
Top. 3 1
allele
Bottom | 2 3
allele

11



Multiple loci underlie many
yes-or-no traits

Multiple loci underlie many
yes-or-no traits

Threshold Threshold
é “Threshold model” é “Threshold model”
Affected Affected
J/ . J/
Liability —y ‘:I;iabimy)_>
T Number of disease-associated alleles a person
has, combined across all loci
Affected sib pair method Affected sib pair method
2,2 23 2,2 23
H H What is probability of
22 22 22 22 this by chance?
Both kids affected, A 1/4
both got allele 2 at B. 1/2
marker from mom. C. 1/8
D. 1/3
®
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Affected sib pair method

What is probability of both kids

|| getting 2 from mom or both
22 22 kids getting 3 from mom?
Both kids affected, A 1/4
both got allele 2 at B. 1/2
marker from mom. C. 1/8
D. 1/3

©

Affected sib pair method

What is probability of both kids

|| getting 2 from mom or both
22 22 kids getting 3 from mom?
Both kids affected, A 1/4
both got allele 2 at B. 1/2
marker from mom. C. 1/8
D. 1/3

(112)%(112) + (112)*(1/2)
Prob of both Prob of both

Affected sib pair method

2,2 23 44 13
2,2 2,2 14 14

Affected sib pair method

2,2 23 44 13
2,2 2,2 14 14

Sib pairs |Observed | Bxected
under nu X2=2(O—E)2
Same 2 (1/2)*2 E
allele o
- " Test for significant
Different |0 (1/2)*2 allele sharing.
allele

13



Affected sib pair method

22 23 44 13
22 22 14 14

Sib pairs | Observed |Expected Doesn’t require you
under null to know dominant or

Same 2 (1/2)*2 recessive, one locus

allele or two, ...

Different |0 (1/2)*2

allele

Affected sib pair method

22 23 44 13
22 22 14 14

Sib pairs | Observed |Bxeected
Same 2 (1/2)*2
allele
Different |0 (172)2
allele

Doesn’t require you

to know dominant or

recessive, one locus
or two, ...

Model-free (a good
thing).

Quantitative traits

wwwjax.orglstaffichurchilliabsitelpubs/gtl. paf

Unlike cystic fibrosis
and Huntington’s
disease, most traits
are not yes-or-no.
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wwwjax.orglstaffichurchilliabsitelpubs/gtl. paf

Unlike cystic fibrosis
and Huntington’s
disease, most traits
are not yes-or-no.

E.g. blood pressure.

Distributions

Distributions

|3
Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice
Distributions
f H
¢
i
I
.
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Environment and error

What if...

. Plain water
§ s \ Salt water

What if...

Exact same mouse, every day for 6 mo

What if...

Exact same mouse, every day for 6 mo

+ Time of day

+ Change in cage-mates
* Age

* Reproductive cycle

16



What if...

Many clones/identical twins

What if...

“Experimental error”
+

random variation
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