
Simple ODE Solvers - Derivation

These notes provide derivations of some simple algorithms for generating, numeri-

cally, approximate solutions to the initial value problem

y′(t) = f
(
t, y(t)

)
y(t0) = y0

Here f(t, y) is a given function, t0 is a given initial time and y0 is a given initial value for y.

The unknown in the problem is the function y(t). We start with

Euler’s Method

Our goal is to determine (approximately) the unknown function y(t) for t ≥ t0. We

are told explicitly the value of y(t0), namely y0. Using the given differential equation, we can

also determine exactly the instantaneous rate of change of y at time t0.

y′(t0) = f
(
t0, y(t0)

)
= f

(
t0, y0

)
If the rate of change of y(t) were to remain f

(
t0, y0

)
for all time, then y(t) would be exactly

y0 + f
(
t0, y0

)
(t− t0). The rate of change of y(t) does not remain f

(
t0, y0

)
for all time, but it

is reasonable to expect that it remains close to f
(
t0, y0

)
for t close to t0. If this is the case,

then the value of y(t) will remain close to y0 + f
(
t0, y0

)
(t − t0) for t close to t0. So pick a

small number h and define

t1 = t0 + h

y1 = y0 + f
(
t0, y0

)
(t1 − t0) = y0 + f

(
t0, y0

)
h

By the above argument

y(t1) ≈ y1

Now we start over. We now know the approximate value of y at time t1. If y(t1) were exactly

y1, then the instantaneous rate of change of y at time t1 would be exactly f(t1, y1). If this

rate of change were to persist for all future time, y(t) would be exactly y1 +f
(
t1, y1

)
(t− t1) .

1



As y(t1) is only approximately y1 and as the rate of change of y(t) varies with t, the rate of

change of y(t) is only approximately f(t1, y1) and only for t near t1. So we approximate y(t)

by y1 + f
(
t1, y1

)
(t− t1) for t bigger than, but close to, t1. Defining

t2 = t1 + h = t0 + 2h

y2 = y1 + f
(
t1, y1

)
(t2 − t1) = y1 + f

(
t1, y1

)
h

we have

y(t2) ≈ y2

We just repeat this argument ad infinitum. Define, for n = 0, 1, 2, 3, · · ·

tn = t0 + nh

Suppose that, for some value of n, we have already computed an approximate value yn for

y(tn). Then the rate of change of y(t) for t close to tn is f
(
t, y(t)

)
≈ f

(
tn, y(tn)

)
≈ f

(
tn, yn

)
and, again for t close to tn, y(t) ≈ yn + f

(
tn, yn

)
(t− tn). Hence

y(tn+1) ≈ yn+1 = yn + f
(
tn, yn

)
h (Eul)

This algorithm is called Euler’s Method. The parameter h is called the step size.

Here is a table applying a few steps of Euler’s method to the initial value problem
y′ = −2t+ y

y(0) = 3
with step size h = 0.1. For this initial value problem

f(t, y) = −2t+ y

t0 = 0

y0 = 3
Of course this initial value problem has been chosen for illustrative purposes only. The exact

solution is, easily, y(t) = 2 + 2t+ et.

n tn yn f(tn, yn) = −2tn + yn yn+1 = yn + f(tn, yn) ∗ h
0 0.0 3.000 −2 ∗ 0.0 + 3.000 = 3.000 3.000 + 3.000 ∗ 0.1 = 3.300
1 0.1 3.300 −2 ∗ 0.1 + 3.300 = 3.100 3.300 + 3.100 ∗ 0.1 = 3.610
2 0.2 3.610 −2 ∗ 0.2 + 3.610 = 3.210 3.610 + 3.210 ∗ 0.1 = 3.931
3 0.3 3.931 −2 ∗ 0.3 + 3.931 = 3.331 3.931 + 3.331 ∗ 0.1 = 4.264
4 0.4 4.264 −2 ∗ 0.4 + 4.264 = 3.464 4.264 + 3.464 ∗ 0.1 = 4.611
5 0.5 4.611

2



The Improved Euler’s Method

Euler’s method is one algorithm which generates approximate solutions to the initial

value problem
y′(t) = f

(
t, y(t)

)
y(t0) = y0

In applications, f(t, y) is a given function and t0 and y0 are given numbers. The function

y(t) is unknown. Denote by ϕ(t) the exact solution for this initial value problem. In other

words ϕ(t) is the function that obeys

ϕ′(t) = f
(
t, ϕ(t)

)
ϕ(t0) = y0

exactly.

Fix a step size h and define tn = t0 + nh. We now derive another algorithm that

generates approximate values for ϕ at the sequence of equally spaced time values t0, t1, t2, · · ·.
We shall denote the approximate values yn with

yn ≈ ϕ(tn)

By the fundamental theorem of calculus and the differential equation, the exact solution

obeys

ϕ(tn+1) = ϕ(tn) +
∫ tn+1

tn

ϕ′(t) dt

= ϕ(tn) +
∫ tn+1

tn

f
(
t, ϕ(t)

)
dt

Fix any n and suppose that we have already found y0, y1, · · · , yn. Our algorithm for

computing yn+1 will be of the form

yn+1 = yn + approximate value for
∫ tn+1

tn

f
(
t, ϕ(t)

)
dt

In fact Euler’s method is of precisely this form. In Euler’s method, we approximate

f
(
t, ϕ(t)

)
for tn ≤ t ≤ tn+1 by the constant f

(
tn, yn

)
. Thus

Euler’s approximate value for
∫ tn+1

tn

f
(
t, ϕ(t)

)
dt =

∫ tn+1

tn

f
(
tn, yn

)
dt = f

(
tn, yn

)
h

3



The area of the complicated region 0 ≤ y ≤ f
(
t, ϕ(t)

)
, tn ≤ t ≤ tn+1 (represented by the

shaded region under the parabola in the left half of the figure below) is approximated by the

area of the rectangle 0 ≤ y ≤ f
(
tn, yn

)
, tn ≤ t ≤ tn+1 (the shaded rectangle in the right

half of the figure below).

tn tn+1

f
(
t, ϕ(t)

)f
(
tn, ϕ(tn)

)
f
(
tn, yn

)

tn tn+1

f
(
t, ϕ(t)

)f
(
tn, ϕ(tn)

)
f
(
tn, yn

)

Our second algorithm, the improved Euler’s method, gets a better approximation

by attempting to approximate by the trapezoid on the right below rather than the rectangle

on the right above. The exact area of this trapezoid is the length h of the base multiplied

tn tn+1

f
(
t, ϕ(t)

)f
(
tn+1, ϕ(tn+1)

)
f
(
tn, ϕ(tn)

)

tn tn+1

f
(
t, ϕ(t)

)f
(
tn+1, ϕ(tn+1)

)
f
(
tn, ϕ(tn)

)

by the average, 1
2 [f
(
tn, ϕ(tn)

)
+ f

(
tn+1, ϕ(tn+1)

)
], of the heights of the two sides. Of course

we do not know ϕ(tn) or ϕ(tn+1) exactly. Recall that we have already found y0, · · · , yn and

are in the process of finding yn+1. So we already have an approximation for ϕ(tn), namely

yn, but not for ϕ(tn+1). Improved Euler uses

ϕ(tn+1) ≈ ϕ(tn) + ϕ′(tn)h ≈ yn + f(tn, yn)h

in approximating 1
2
[f
(
tn, ϕ(tn)

)
+ f

(
tn+1, ϕ(tn+1)

)
]. Altogether

Improved Euler’s approximate value for
∫ tn+1

tn

f
(
t, ϕ(t)

)
dt

= 1
2

[
f
(
tn, yn

)
+ f

(
tn+1, yn + f(tn, yn)h

)]
h

so that the improved Euler’s method algorithm is

y(tn+1) ≈ yn+1 = yn + 1
2

[
f
(
tn, yn

)
+ f

(
tn+1, yn + f(tn, yn)h

)]
h (ImpEul)

4



Here are the first two steps of the improved Euler’s method applied to

y′ = −2t+ y

y(0) = 3

with h = 0.1. In each step we compute f(tn, yn), followed by yn+f(tn, yn)h, which we denote

ỹn+1, followed by f(tn+1, ỹn+1), followed by yn+1 = yn + 1
2

[
f
(
tn, yn

)
+ f

(
tn+1, ỹn+1

)]
h.

t0 = 0 y0 = 3 =⇒ f(t0, y0) = −2 ∗ 0 + 3 = 3

=⇒ ỹ1 = 3 + 3 ∗ 0.1 = 3.3

=⇒ f(t1, ỹ1) = −2 ∗ 0.1 + 3.3 = 3.1

=⇒ y1 = 3 + 1
2 [3 + 3.1] ∗ 0.1 = 3.305

t1 = 0.1 y1 = 3.305 =⇒ f(t1, y1) = −2 ∗ 0.1 + 3.305 = 3.105

=⇒ ỹ2 = 3.305 + 3.105 ∗ 0.1 = 3.6155

=⇒ f(t2, ỹ2) = −2 ∗ 0.2 + 3.6155 = 3.2155

=⇒ y2 = 3.305 + 1
2
[3.105 + 3.2155] ∗ 0.1 = 3.621025

Here is a table which gives the first five steps.

n tn yn f(tn, yn) ỹn+1 f(tn+1, ỹn+1) yn+1

0 0.0 3.000 3.000 3.300 3.100 3.305
1 0.1 3.305 3.105 3.616 3.216 3.621
2 0.2 3.621 3.221 3.943 3.343 3.949
3 0.3 3.949 3.349 4.284 3.484 4.291
4 0.4 4.291 3.491 4.640 3.640 4.647
5 0.5 4.647

The Runge-Kutta Method

The Runge-Kutta algorithm is similar to the Euler and improved Euler methods in

that it also uses, in the notation of the last section,

yn+1 = yn + approximate value for
∫ tn+1

tn

f
(
t, ϕ(t)

)
dt

5



But rather than approximating
∫ tn+1

tn
f
(
t, ϕ(t)

)
dt by the area of a rectangle, as does Euler,

or by the area of a trapezoid, as does improved Euler, it approximates by the area under a

parabola. That is, it uses Simpson’s rule. According to Simpson’s rule (if you don’t know

Simpson’s rule, just take my word for it)

∫ tn+h

tn

f
(
t, ϕ(t)

)
dt ≈ h

6

[
f
(
tn, ϕ(tn)

)
+ 4f

(
tn + h

2
, ϕ(tn + h

2
)
)

+ f
(
tn + h, ϕ(tn + h)

)]

As we don’t know ϕ(tn), ϕ(tn + h
2

) or ϕ(tn + h), we have to approximate them as well. The

Runge-Kutta algorithm, incorporating all these approximations, is

kn,1 = f(tn, yn)

kn,2 = f(tn + 1
2
h, yn + h

2
kn,1)

kn,3 = f(tn + 1
2
h, yn + h

2
kn,2)

kn,4 = f(tn + h, yn + hkn,3)

yn+1 = yn + h
6 [kn,1 + 2kn,2 + 2kn,3 + kn,4]

(RK)

Here are the first two steps of the Runge-Kutta algorithm applied to

y′ = −2t+ y

y(0) = 3

6



with h = 0.1.

t0 = 0 y0 = 3

=⇒ k0,1 = f(0, 3) = −2 ∗ 0 + 3 = 3

=⇒ y0 + h
2k0,1 = 3 + 0.05 ∗ 3 = 3.15

=⇒ k0,2 = f(0.05, 3.15) = −2 ∗ 0.05 + 3.15 = 3.05

=⇒ y0 + h
2
k0,2 = 3 + 0.05 ∗ 3.05 = 3.1525

=⇒ k0,3 = f(0.05, 3.1525) = −2 ∗ 0.05 + 3.1525 = 3.0525

=⇒ y0 + hk0,3 = 3 + 0.1 ∗ 3.0525 = 3.30525

=⇒ k0,4 = f(0.1, 3.30525) = −2 ∗ 0.1 + 3.30525 = 3.10525

=⇒ y1 = 3 + 0.1
6

[3 + 2 ∗ 3.05 + 2 ∗ 3.0525 + 3.10525] = 3.3051708

t1 = 0.1 y1 = 3.3051708

=⇒ k1,1 = f(0.1, 3.3051708) = −2 ∗ 0.1 + 3.3051708 = 3.1051708

=⇒ y1 + h
2k1,1 = 3.3051708 + 0.05 ∗ 3.1051708 = 3.4604293

=⇒ k1,2 = f(0.15, 3.4604293) = −2 ∗ 0.15 + 3.4604293 = 3.1604293

=⇒ y1 + h
2
k1,2 = 3.3051708 + 0.05 ∗ 3.1604293 = 3.4631923

=⇒ k1,3 = f(0.15, 3.4631923) = −2 ∗ 0.15 + 3.4631923 = 3.1631923

=⇒ y1 + hk1,3 = 3.3051708 + 0.1 ∗ 3.4631923 = 3.62149

=⇒ k1,4 = f(0.2, 3.62149) = −2 ∗ 0.2 + 3.62149 = 3.22149

=⇒ y2 = 3.3051708 + 0.1
6 [3.1051708 + 2 ∗ 3.1604293+

+ 2 ∗ 3.1631923 + 3.22149] = 3.6214025

t2 = 0.2 y2 = 3.6214025

and here is a table giving the first five steps. The intermediate data is only given to three

decimal places even though the computation has been done to many more.

7



n tn yn kn1 yn1 kn2 yn2 kn3 yn3 kn4 yn+1

0 0.0 3.000 3.000 3.150 3.050 3.153 3.053 3.305 3.105 3.305170833
1 0.1 3.305 3.105 3.460 3.160 3.463 3.163 3.621 3.221 3.621402571
2 0.2 3.621 3.221 3.782 3.282 3.786 3.286 3.950 3.350 3.949858497
3 0.3 3.950 3.350 4.117 3.417 4.121 3.421 4.292 3.492 4.291824240
4 0.4 4.292 3.492 4.466 3.566 4.470 3.570 4.649 3.649 4.648720639
5 0.5 4.648

These notes have, hopefully, motivated the Euler, improved Euler and Runge-Kutta

algorithms. So far we not attempted to see how efficient and how accurate the algorithms

are. A first look at those questions is provided in the notes “Simple ODE Solvers – Error

Behaviour”.

8


