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The physiological responses of cells to external and internal

stimuli are governed by genes and proteins interacting in

complex networks whose dynamical properties are impossible

to understand by intuitive reasoning alone. Recent advances by

theoretical biologists have demonstrated that molecular

regulatory networks can be accurately modeled in mathematical

terms. These models shed light on the design principles of

biological control systems and make predictions that have been

verified experimentally.
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Abbreviations
Cdk cyclin-dependent kinase

CKI cyclin-dependent kinase inhibitor

MAPK mitogen-activated protein kinase

MPF M-phase-promoting factor (Cdk1–cyclin B)

Introduction
Since the advent of recombinant DNA technology about

20 years ago, molecular biologists have been remarkably

successful in dissecting the molecular mechanisms that

underlie the adaptive behaviour of living cells. Stunning

examples include the lysis–lysogeny switch of viruses [1],

chemotaxis in bacteria [2], the DNA-division cycle of

yeasts [3], segmentation patterns in fruit fly development

[4] and signal transduction pathways in mammalian cells

[5]. When the information in any of these cases is laid

out in graphical form (http://discover.nci.nih.gov/kohnk/

interaction_maps.html; http://www.csa.ru:82/Inst/gorb_

dep/inbios/genet/s0ntwk.htm; http://www.biocarta.com/

genes/index.asp), the molecular network looks strikingly

similar to the wiring diagram of a modern electronic

gadget. Instead of resistors, capacitors and transistors

hooked together by wires, one sees genes, proteins and

metabolites hooked together by chemical reactions and

intermolecular interactions. The temptation is irresistible

to ask whether physiological regulatory systems can be

understood in mathematical terms, in the same way an

electrical engineer would model a radio [6]. Preliminary

attempts at this sort of modelling have been carried out in

each of the cases mentioned above [7–11,12��,13,14,15��].

To understand how these models are built and why they

work the way they do, one must develop a precise math-

ematical description of molecular circuitry and some intui-

tion about the dynamical properties of regulatory networks.

Complex molecular networks, like electrical circuits, seem

to be constructed from simpler modules: sets of interacting

genes and proteins that carry out specific tasks and can be

hooked together by standard linkages [16].

Excellent reviews from other perspectives can be found

elsewhere [17,18�,19–22,23�,24�,25], and also book-length

treatments [26–29].

In this review, we show how simple signaling pathways

can be embedded in networks using positive and negative

feedback to generate more complex behaviours — toggle

switches and oscillators — which are the basic building

blocks of the exotic, dynamic behaviour shown by non-

linear control systems. Our purpose is to present a precise

vocabulary for describing these phenomena and some

memorable examples of each. We hope that this review

will improve the reader’s intuition about molecular

dynamics, foster more accurate discussions of the issues,

and promote closer collaboration between experimental

and computational biologists.

Linear and hyperbolic signal-response
curves
Let’s start with two simple examples of protein dynamics:

synthesis and degradation (Figure 1a), and phosphoryla-

tion and dephosphorylation (Figure 1b). Using the law of

mass action, we can write rate equations for these two

mechanisms, as follows:

dR

dt
¼ k0 þ k1S � k2R; (a)

dRP

dt
¼ k1SðRT � RPÞ � k2RP: (b)

In case (a), S ¼ signal strength (e.g. concentration of

mRNA) and R ¼ response magnitude (e.g. concentration
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Figure 1
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of protein). In case (b), RP is the phosphorylated form of

the response element (which we suppose to be the active

form), RP ¼ ½RP�, and RT ¼ R þ RP ¼ total concentration

of the response element. A steady-state solution of a

differential equation, dR=dt ¼ f ðRÞ, is a constant, Rss, that

satisfies the algebraic equation f ðRssÞ ¼ 0. In our cases,

Rss ¼
k0 þ k1S

k2

(a)

RP;ss ¼
RT S

ðk2=k1Þ þ S
: (b)

These equations correspond to the linear and hyperbolic

signal-response curves in Figure 1. In most cases, these

simple components are embedded in more complex path-

ways, to generate signal-response curves of more adaptive

value.

Sigmoidal signal-response curves
Case (c) of Figure 1 is a modification of case (b), where the

phosphorylation and dephosphorylation reactions are gov-

erned by Michaelis-Menten kinetics:

dRP

dt
¼ k1SðRT � RPÞ

Km1 þ RT � RP
� k2RP

km2 þ RP
; (c)

In this case, the steady-state concentration of the phos-

phorylated form is a solution of the quadratic equation:

k1SðRT � RPÞðKm2 þ RPÞ ¼ k2RPðKm1 þ RT � RPÞ:
The biophysically acceptable solution (0 < RP < RT ) of

this equation is [30]:

RP;ss

RT
¼ Gðk1 S ; k2 ;

Km1

RT
;
Km2

RT
Þ; (d)

where the ‘Goldbeter-Koshland’ function, G, is defined

as:

Gðu;v;J;KÞ

¼ 2uK

v� uþ vJ þ uK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv� uþ vJ þ uKÞ2 � 4ðv� uÞuK

q :

In Figure 1c, column 3, we plot RP;ss as a function of S: it is

a sigmoidal curve if J and K are both <<1. This mechanism

for creating a switch-like signal-response curve is called

zero-order ultrasensitivity.

The Goldbeter–Koshland function, although switch-like,

shares with linear and hyperbolic curves the properties of

being graded and reversible. By ‘graded’ we mean that

the response increases continuously with signal strength.

A slightly stronger signal gives a slightly stronger

response. The relationship is ‘reversible’ in the sense

that if signal strength is changed from Sinitial to Sfinal, the

response at Sfinal is the same whether the signal is being

increased (Sinitial < Sfinal) or decreased (Sinitial > Sfinal).

Although continuous and reversible, a sigmoidal response

is abrupt. Like a buzzer or a laser pointer, to activate the

response one must push hard enough on the button, and

to sustain the response one must keep pushing. When one

lets up on the button, the response switches off at pre-

cisely the same signal strength at which it switched on.

Perfectly adapted signal-response curves
By supplementing the simple linear response element

(Figure 1a) with a second signaling pathway (through

species X in Figure 1d), we can create a response mechan-

ism that exhibits perfect adaptation to the signal. Perfect

adaptation means that although the signaling pathway

exhibits a transient response to changes in signal strength,

its steady-state response Rss is independent of S. Such

behaviour is typical of chemotactic systems, which

respond to an abrupt change in attractants or repellents,

but then adapt to a constant level of the signal. Our own

sense of smell operates this way, so we refer to this type of

response as a ‘sniffer.’

The hyperbolic response element (Figure 1b) can also be

made perfectly adapted by adding a second signaling

pathway that down regulates the response. Levchenko

and Iglesias [31�] have used a mechanism of this sort to

model phosphoinosityl signaling in slime mold cells and

neutrophils.

Many authors have presented models of perfect adapta-

tion (see [32–35] for representative published work).

Positive feedback: irreversible switches
In Figure 1d the signal influences the response via two

parallel pathways that push the response in opposite

directions (an example of feed-forward control). Alterna-

tively, some component of a response pathway may

(Figure 1 Legend) Signal-response elements. In this tableau, the rows correspond to (a) linear response, (b) hyperbolic response, (c) sigmoidal

response, (d) perfect adaptation, (e) mutual activation, (f) mutual inhibition and (g) homeostasis. The columns present wiring diagrams (left), rate

curves (centre) and signal-response curves (right). From each wiring diagram, we derive a set of kinetic equations, which are displayed in the text

(cases a, b and c) or in Box 1 (all other cases). The graphs in the centre and right columns are derived from the kinetic equations, for the parameter

values given in Box 1. In the centre column, the solid curve is the rate of removal of the response component (R or RP, depending on the context), and

the dashed lines are the rates of production of the response component for various values of signal strength (the value of S is indicated next to each

curve). The filled circles, where the rates of production and removal are identical, represent steady-state values of the response. In the right column,
we plot the steady-state response as a function of signal strength. Row (d) is exceptional: both production and removal depend on signal strength, in

such a fashion that the steady-state value of R is independent of S. Hence, the signal-response curve (not shown) is flat. Instead, we plot the transient

response (R, black curve) to stepwise increases in signal strength (S, red curve), with concomitant changes in the indirect signaling pathway (X, green

curve). Other symbols: Pi, inorganic phosphate; E, a protein involved with R in mutual activation or inhibition; EP, the phosphorylated form of E. In (e)

and (f), the open circle in the centre column and the dashed curve in the right column represent unstable steady states. Scrit is the signal strength

where stable and unstable steady states coalesce (a saddle-node bifurcation point).
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feed back on the signal. Feedback can be positive,

negative or mixed.

There are two types of positive feedback. In Figure 1e, R

activates protein E (by phosphorylation), and EP

enhances the synthesis of R. In Figure 1f, R inhibits

E, and E promotes the degradation of R; hence, R and E

are mutually antagonistic. In either case (mutual activa-

tion or antagonism), positive feedback may create a dis-

continuous switch, meaning that the cellular response

changes abruptly and irreversibly as signal magnitude

crosses a critical value. For instance, in Figure 1e, as

signal strength (S) increases, the response is low until S
exceeds some critical intensity, Scrit, at which point the

response increases abruptly to a high value. Then, if S
decreases, the response stays high (i.e. the switch is irre-

versible; unlike a sigmoidal response, which is reversible).

Notice that, for S values between 0 and Scrit, the control

system is ‘bistable’ — that is, it has two stable steady-state

response values (on the upper and lower branches — the

solid lines) separated by an unstable steady state (on the

intermediate branch — the dashed line).

The signal-response curves in Figure 1e,f would be called

‘one-parameter bifurcation diagrams’ by an applied math-

ematician. The parameter is signal strength (manipula-

table by the experimenter). The steady-state response, on

the Y axis, is an indicator of the behaviour of the control

system as a function of the signal. At Scrit, the behaviour of

the control system changes abruptly and irreversibly from

low response to high response (or vice versa). Such points

of qualitative change in the behaviour of a nonlinear

control system are called bifurcation points, in this case,

a ‘saddle-node bifurcation point’. We will shortly meet

other, more esoteric bifurcation points, associated with

more complex signal-response relationships.

Discontinuous responses come in two varieties: the one-

way switch (e.g. Figure 1e), and the toggle switch (e.g.

Figure 1f). One-way switches presumably play major

roles in developmental processes characterized by a

point-of-no-return (see, for example, [21]). Frog oocyte

maturation in response to progesterone is a particularly

clear example [36]. Apoptosis is another decision that

must be a one-way switch.

In the toggle switch, if S is decreased enough, the switch

will go back to the off-state, as in Figure 1f (column 3).

For intermediate stimulus strengths (Scrit1 < S < Scrit2),

the response of the system can be either small or large,

depending on how S was changed. This sort of two-way,

discontinuous switch is often referred to as hysteresis.

Nice examples include the lac operon in bacteria [21], the

activation of M-phase-promoting factor (MPF) in frog egg

extracts [37], and the autocatalytic conversion of normal

prion protein to its pathogenic form [38��]. Bistable

behaviour of MPF in frog egg extracts has recently been

confirmed experimentally by two groups: Sha et al. [39],

and Pomerening and Ferrell (personal communication).

Chen et al. [9] proposed that a toggle switch governs the

‘start’ and ‘finish’ transitions in the budding yeast cell

cycle, and this prediction was confirmed recently in an

elegant experiment by Cross et al. [40��].

Box 1 Mathematical models of signal-response systems.

Figure 1d. Perfectly adapted

dR

dt
¼ k1S � k2X � R Rss ¼ k1k4

k2k3

dX

dt
¼ k3S � k4X Xss ¼ k3S

k4

Observe that Rss is independent of S.

Figure 1e. Mutual activation

dR

dt
¼ k0EPðRÞ þ k1S � k2X � R

EPðRÞ ¼ Gðk3R; k4; J3; J4Þ

Figure 1f. Mutual inhibition

dR

dt
¼ ko þ k1S � k2R � k0

2EðRÞ � R

EðRÞ ¼ Gðk3; k4R; J3; J4Þ

Figure 1g. Negative feedback: homeostasis
dR

dt
¼ k0EðRÞ � k2S � R

EðRÞ ¼ Gðk3; k4R; J3; J4Þ

Figure 2a. Negative-feedback oscillator
dX

dt
¼ k0 þ k1S � k2X - k 02RP � X

dYP

dt
¼ k3XðYT � YPÞ

Km3 þ YT � YP
� k4YP

Km4 þ YP

dRP

dt
¼ k5YPðRT � RPÞ

Km5 þ RT � RP
� k6RP

Km6 þ RP

Figure 2b. Activator inhibitor

dR

dt
¼ koEPðRÞ þ k1S � k2R � k0

2X � R

dX

dt
¼ k5R � k6X

EPðRÞ ¼ Gðk3R; k4; J3; J4Þ

Figure 2c. Substrate-depletion oscillator

dX

dt
¼ k1S � ½k0

0 þ k0EPðRÞ� � X

dR

dt
¼ ½k0

0 þ k0EPðRÞ� � X � k2R

EPðRÞ ¼ Gðk3R; k4; J3; J4Þ

Parameter sets
1a k0 ¼ 0:01, k1 ¼ 1, k2 ¼ 5

1b k1 ¼ k2 ¼ 1, RT ¼ 1
1c k1 ¼ k2 ¼ 1, RT ¼ 1, Km1 ¼ Km2 ¼ 0:05

1d k1 ¼ k2 ¼ 2, k3 ¼ k4 ¼ 1

1e k0 ¼ 0:4, k1 ¼ 0:01, k2 ¼ k3 ¼ 1, k4 ¼ 0:2, J3 ¼ J4 ¼ 0:05

1f k0 ¼ 0, k1 ¼ 0:05, k2 ¼ 0:1, k0
2 ¼ 0:5, k3 ¼ 1, k4 ¼ 0:2,

J3 ¼ J4 ¼ 0:05

1g k0 ¼ 1, k2 ¼ 1, k3 ¼ 0:5, k4 ¼ 1, J3 ¼ J4 ¼ 0:01

2a k0 ¼ 0, k1 ¼ 1, k2 ¼ 0:01, k0
2 ¼ 10, k3 ¼ 0:1, k4 ¼ 0:2, k5 ¼ 0:1,

k6 ¼ 0:05, YT ¼ RT ¼ 1, Km3 ¼ Km4 ¼ Km5 ¼ Km6 ¼ 0:01

2b k0 ¼ 4, k1 ¼ k2 ¼ k0
2 ¼ k3 ¼ k4 ¼ 1, k5 ¼ 0:1, k6 ¼ 0:075,

J3 ¼ J4 ¼ 0:3

2c k0
0 ¼ 0:01, k0 ¼ 0:4, k1 ¼ k2 ¼ k3 ¼ 1, k4 ¼ 0:3, J3 ¼ J4 ¼ 0:05
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Toggle switches have also been realized in artificial

genetic networks based on mutual inhibition [41] or

mutual activation [42�]. These networks were designed

and built in explicit reliance on theoretical ideas of the

kind we have described.

Negative feedback: homeostasis and
oscillations
In negative feedback, the response counteracts the effect

of the stimulus. In Figure 1g, the response element, R,

inhibits the enzyme catalysing its synthesis; hence, the

rate of production of R is a sigmoidal decreasing function

of R. The signal in this case is the demand for R — that is,

the rate of consumption of R is given by k2SR. The steady

state concentration of R is confined to a narrow window

for a broad range of signal strengths, because the supply of

R adjusts to its demand. This type of regulation, com-

monly employed in biosynthetic pathways, is called

homeostasis. It is a kind of imperfect adaptation, but it

is not a sniffer because stepwise increases in S do not

generate transient changes in R.

Negative feedback can also create an oscillatory response.

A two-component, negative feedback loop, X!R—|X,

can exhibit damped oscillations to a stable steady state

but not sustained oscillations [43]. Sustained oscillations

require at least three components: X!Y!R––|X. The

third component (Y) introduces a time delay in the feed-

back loop, causing the control system repeatedly to over-

shoot and undershoot its steady state.

In Figure 2a (column 1), we present a wiring diagram for a

negative-feedback control loop. For intermediate signal

strengths, the system executes sustained oscillations

(column 2) in the variables X(t), YP(t) and RP(t). In the

signal-response curve (column 3), we plot RP;ss as a

function of S, noting that the steady-state response is

unstable for Scrit1 < S < Scrit2. Within this range, RP(t)

Figure 2
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Oscillatory networks. In this tableau, the rows correspond to (a) negative feedback, (b) activator-inhibitor and (c) substrate-depletion oscillators. The

left column presents wiring diagrams and the right column signal-response curves. The centre column presents time courses (a) or phase planes (b,c).

The kinetic equations corresponding to each wiring diagram are displayed in Box 1, along with the parameter values for which the other two columns

are drawn. S, signal; R, response; E, X and Y, other components of the signaling network; EP, phosphorylated form of E; etc. (a) There are two ways to

close the negative feedback loop: first, RP inhibits the synthesis of X; or second, RP activates the degradation of X. We choose case 2. Centre

column: oscillations of X (black, left ordinate), YP (red, right ordinate) and RP (blue, right ordinate) for S ¼ 2. Right column: the straight line is the

steady-state response (RP;ss) as a function of S; solid line indicates stable steady states, dashed line indicates unstable steady states. For a fixed
value of S between Scrit1 and Scrit2, the unstable steady state is surrounded by a stable periodic solution. For example, the solution in the centre

column oscillates between RPmax ¼ 0:28 and RPmin ¼ 0:01. These two numbers are plotted as filled circles (at S ¼ 2) in the signal-response curve to

the right. Scrit1 and Scrit2 are so-called points of Hopf bifurcation, where small-amplitude periodic solutions are born as a steady state loses stability.

Centre column, (b,c): phase plane portraits for S ¼ 0:2; red curve, (X,R) pairs that satisfy dR=dt ¼ 0; blue curve, (X,R) pairs that satisfy dX=dt ¼ 0;

open circle, unstable steady state. Right column, (b,c): solid line, stable steady states; dashed line, unstable steady states; closed/open circles,

maximum and minimum values of R during a stable/unstable oscillation. Scrit1 and Scrit2 are called subcritical Hopf bifurcation points.
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oscillates between RPmin and RPmax (the lower and upper

filled circles, respectively). In the terminology introduced

earlier, Scrit1 and Scrit2 are bifurcation points, where the

steady-state response changes its stability and oscillations

arise by a generic mechanism called a ‘Hopf bifurcation.’

As S moves away from either bifurcation point, the

amplitude of oscillation increases.

Negative feedback has been proposed as a basis for

oscillations in protein synthesis [44], MPF activity [45],

MAPK signaling pathways [46], and circadian rhythms

[47,48,49�].

Using similar theoretical ideas about negative feedback

oscillators, Elowitz and Leibler [50] designed an artificial

genetic network consisting of three operons that repress

one another in a loop. In order to satisfy the theoretical

expectations for sustained oscillations, these authors engi-

neered the three proteins to be unstable, with roughly

equal half-lives. Individual bacteria containing these

plasmids showed periodic expression of a fluorescent

reporter protein, qualifying this case as a literal ‘blinker’.

Positive and negative feedback: oscillators
Oscillations often arise in systems containing both posi-

tive and negative feedback (Figure 2b,c). The positive-

feedback loop creates a bistable system (a toggle switch)

and the negative-feedback loop drives the system back

and forth between the two stable steady states. Oscillators

of this sort come in two varieties.

Activator-inhibitor oscillators

In Figure 2b, R is created in an autocatalytic process, and

then it promotes the production of an inhibitor, X, which

speeds up R removal. First, R builds up, then comes X to

force R back down, then X disappears and R can rise again.

In the second column of Figure 2b, we plot a ‘phase

portrait’ of the activator-inhibitor oscillator, illustrating

the notion that the negative-feedback loop drives the

bistable system back and forth between its two steady-

state regimes. First, consider X to be the signal and R to

be the response, and plot (red curve) Rss as a function of X.

We get an S-shaped signal-response curve, indicating that

the network functions as a toggle switch. For intermedi-

ate values of X, the control system is bistable (Rss can be

either small or large). Conversely, plotting Xss (response)

as a function of R (signal), we get a simple linear response

curve (blue). Mathematicians refer to these curves as

the R-nullcline (dR=dt ¼ 0, red) and the X-nullcline

(dX=dt ¼ 0, blue). Where the two curves intersect (o)

is a steady state for the full system, but the control system

does not settle on this steady state because it is unstable.

Instead, the variables, R(t) and X(t), oscillate around the

steady state on a closed orbit (black curve, called a stable

limit cycle). Such behaviour is called a hysteresis oscil-

lator, and the closed orbit is called a hysteresis loop.

The classic example of an activator-inhibitor system is

cyclic AMP production in the slime mold, Dictyostelium
discoideum [51]. External cAMP binds to a surface recep-

tor, which stimulates adenylate cyclase to produce and

excrete more cAMP. At the same time, cAMP-binding

pushes the receptor into an inactive form. After cAMP

falls off, the inactive form slowly recovers its ability to

bind cAMP and stimulate adenylate cyclase again. This

mechanism lies behind all the curious properties of the

cAMP signaling system in Dictyostelium: oscillations, relay,

adaptation, and wave propagation. (For details, see [27].)

Substrate-depletion oscillators

In Figure 2c, X is converted into R in an autocatalytic

process. Suppose, at first, X is abundant and R is scarce. As

R builds up, the production of R accelerates until there is

an explosive conversion of the entire pool of X into R.

Then the autocatalytic reaction shuts off for lack of

substrate, X. R is degraded, and X must build up again

before another burst of R is produced.

This is essentially the mechanism of MPF oscillations in

frog egg extracts [37,52]. MPF is a dimer of a kinase

subunit, cyclin-dependent kinase 1 (Cdk1), and a regu-

latory subunit, cyclin B. As cyclin B accumulates in the

extract, it combines rapidly with Cdk1 (in excess). The

dimer is immediately inactivated by phosphorylation of

the kinase subunit (X in Figure 2c is cyclin B–Cdk1-P).

X can be converted into active MPF (R in Figure 2c is the

unphosphorylated form of cyclin B–Cdk1) by a phospha-

tase called Cdc25 (EP in the figure). Active MPF acti-

vates Cdc25 by phosphorylating it. The true MPF story is

considerably more complicated than just described, but in

broad strokes it is a substrate-depletion oscillator.

The signal-response curve for this mechanism is plotted

in column 3 of Figure 2c. The signal, S, is the rate of

synthesis of substrate X. Low signal gives low response

and high signal gives high response, as expected. But for S
between Scrit1 and Scrit2, the steady-state response is

unstable and the response oscillates between Rmax (upper

filled circles) and Rmin (lower filled circles). The oscilla-

tions are ‘born’ at Hopf bifurcations (at Scrit1 and Scrit2),

but there is a big difference between the Hopf bifurca-

tions in Figure 2c and those in Figure 2a. In Figure 2a, the

‘newborn’ limit cycles (close to Scrit) are stable, whereas in

Figure 2c they are unstable (as indicated by the open

circles). As S departs from Scrit, the amplitude of the

unstable limit cycle grows quickly, until the branch of

unstable limit cycles connects smoothly with the branch

of large amplitude, stable limit cycles (denoted by filled

circles). To distinguish between these two possibilities,

the bifurcations in Figure 2a are called ‘supercritical

Hopfs’, and the ones in Figure 2c are called ‘subcritical’.

The distinction between super- and subcritical Hopf

bifurcations has important physiological consequences.
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Look again at Figures 2a and c, and let us imagine that

signal strength S is being reduced slowly from 8 to 4 in

Figure 2a and from 0.4 to 0.2 in Figure 2c. In both cases,

we pass a Hopf bifurcation at Scrit2. In case 2a, it is a

supercritical Hopf bifurcation, and the oscillatory solu-

tions appear, at first, with small amplitude, perhaps too

small to generate a useful response. On the other hand, in

case 2c, as S passes the subcritical Hopf bifurcation, stable

oscillations of large amplitude appear abruptly. The con-

trol system immediately generates a large and robust

response. When S is being changed in the opposite

direction, the large amplitude periodic solutions disap-

pear just as abruptly. Hence, subcritical Hopf bifurcations

provide a general mechanism for hysteretic transitions

between a stable steady state and a stable, large amplitude

oscillation. In biophysical control systems, where mem-

brane potential oscillations can be measured with great

accuracy, it is easy to distinguish the difference between

sub- and supercritical Hopf bifurcations (e.g. [53]).

Complex networks: the cell cycle control
system
The signal-response elements we have just described,

buzzers, sniffers, toggles and blinkers, usually appear as

components of more complex networks (see, for example,

[7–11,12��]). Being most familiar with the regulatory

network of the eukaryotic cell cycle, we use that example

to illustrate the issues involved in modelling realistic

wiring diagrams.

A generic wiring diagram for the Cdk network regulating

DNA synthesis and mitosis is presented in Figure 3a. The

network, involving proteins that regulate the activity of

Cdk1–cyclin B heterodimers, consists of three modules

that oversee the G1/S, G2/M and M/G1 transitions of the

cell cycle. The G1/S module is a toggle switch, based on

mutual inhibition between Cdk1–cyclin B and CKI, a

stoichiometric cyclin-dependent kinase inhibitor. The

G2/M module is a second toggle switch, based on mutual

activation between Cdk1–cyclin B and Cdc25 (a phos-

phatase that activates the dimer), and mutual inhibition

between CDK1–cyclin B and Wee1 (a kinase that inacti-

vates the dimer). The M/G1 module is an oscillator, based

on a negative-feedback loop: Cdk1–cyclin B activates the

anaphase-promoting complex (APC), which activates

Cdc20, which degrades cyclin B.

The ‘signal’ that drives cell proliferation is cell growth: a

newborn cell cannot leave G1 and enter the DNA synth-

esis/division process (S/G2/M) until it grows to a critical

size [54]. Hence, our signal-response curve is a plot of

steady-state activity of Cdk1–cyclin B as a function of cell

size (Figure 3b). The signal-response curve of the full

network is complicated indeed, but it clearly has inher-

ited the basic characteristics of its component modules.

We can discern the typical S-shaped bistability curves of

the G1/S and G2/M modules and the oscillatory solutions

of the negative-feedback loop (the M/G1 module). The

oscillatory solutions, generated by the negative-feedback

loop, interact with the bistability curve of the G2/M

module to create an ‘infinite-period’ bifurcation at cell

size ¼ 1:25. At this bifurcation (SN/IP), a stable steady

state gives way to a large-amplitude periodic solution, and

the period of oscillation is very long, for cell size close to

1.25. As size increases above 1.25, the period of oscillation

drops dramatically.

In Figure 3b (red curve), progress through the cell cycle is

viewed as a sequence of bifurcations. A small newborn

cell (size ¼ 0:73) is attracted to the stable G1 steady state

(very low activity of Cdk1–cyclin B). As it grows, it

eventually passes the saddle-node bifurcation (SN3)

where the G1 steady state disappears, and the cell makes

an irreversible transition into S/G2 (moderate activity of

Cdk1–cyclin B). It stays in S/G2 until it grows so large

that the S/G2 steady state disappears, giving way to an

infinite-period oscillation (SN/IP). Cyclin-B-dependent

kinase activity soars, driving the cell into mitosis, and

then plummets, as cyclin B is degraded by APC–Cdc20.

The drop in Cdk1–cyclin B activity is the signal for the

cell to divide, causing cell size to be halved from 1.46 to

0.73, and the control system is returned to its starting

point, in the domain of attraction of the G1 steady state.

Signaling in space
So far, we have considered only time-dependent signal-

ing. But spatial signaling also plays important roles in cell

physiology (e.g. cell aggregation, somite formation, cell

division plane localization, etc.). Interestingly the same

mechanism (autocatalysis plus negative feedback) that

creates oscillations (broken symmetry in time) can also

create spatial patterns (broken symmetry in space)

[55,56]. Two sorts of patterns may arise. If the inhibitor

(or substrate) diffuses much more rapidly than the acti-

vator, activator piles up in local regions of space, forming

steady-state (time-independent) patterns. On the other

hand, when the diffusion constant of the inhibitor (or

substrate) is about the same as (or less than) the diffusion

constant of the activator, travelling waves of ‘activation’

propagate through the medium.

Steady-state patterns (commonly called ‘Turing pat-

terns’) have been proposed for many time-independent,

spatially periodic patterns in biology, such as animal coat

patterns, leaf rudiment positioning, hair follicle distribu-

tions, and so on [57]. Travelling waves of cyclic AMP in

fields of Dictyostelium amoebae govern the processes of

aggregation, slug motility and fruiting [58,59].

Meinhardt and de Boer [60��] have recently presented an

elegant model of division plane localization in Escherichia
coli. In this model, FtsZ protein bound to the cell mem-

brane promotes further FtsZ binding, at the expense of

freely diffusible FtsZ in the cytoplasm. By Turing-type
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symmetry breaking, these interactions would create FtsZ

rings at arbitrary positions along the bacterial axis. Inter-

actions among Min proteins (C, D and E) create a pole-to-

pole oscillating wave, which biases the FtsZ ring to form

in the centre of the cell.

Conclusions
The life of every organism depends crucially on networks

of interacting proteins that detect signals and generate

appropriate responses. Examples include chemotaxis,

heat shock response, sporulation, hormone secretion,

and cell-cycle checkpoints. Although diagrams and infor-

mal hand-waving arguments are often used to rationalize

how these control systems work, such cartoons lack the

precision necessary for a quantitative and reliable under-

standing of complex regulatory networks. To reprogram

cellular control systems to our own specifications, we will

need more exact, engineering-style representations of

their wiring diagrams and governing equations.

Mathematical modelling and computer simulation of

protein networks is a tool for formulating mechanistic

hypotheses precisely and for deriving with confidence

their physiological implications. In this review, we have

shown how to create mathematical representations (non-

linear differential equations) of some simple signal-

response elements, and how certain feedback and feed-

forward signals can create diverse types of responses:

sigmoidal switches (buzzers), transient responses (snif-

fers), hysteretic switches (toggles), and oscillators (blin-

kers). From these components, nature has constructed

regulatory networks of great complexity. With accurate

mathematical representations of the individual compo-

nents, we can assemble a computational model of any

such network. By numerical simulation, we can compute

the expected output of the network to any particular

input.

A crucial point of contact between physiologists and

applied mathematicians is the input–output relationship

of a control system — what experimentalists call a signal-

response curve, and theoreticians call a one-parameter

bifurcation diagram. From the physiologist’s perspective,

a signal-response curve summarizes the behaviour of the

biological control system. From the mathematician’s

perspective, a one-parameter bifurcation diagram sum-

marizes the general, qualitative properties of solutions

of a set of nonlinear differential equations. The theory

of bifurcations assures us that there are only a few types

of signal-response relationships, most of which have

appeared in our examples. Irreversible transitions are

associated with saddle-node bifurcations (Figure 1e).

Oscillations arise at Hopf bifurcations (Figure 2a–c),

and infinite-period bifurcations (Figure 3b). No matter

how complicated the network or how rich its behaviour,

the signal-response curve can always be decomposed into

these three bifurcations and a few others.

For the community of scientists to develop the sophisti-

cated interplay of theory and experiment that will be

needed to understand and manipulate molecular regula-

tory systems underlying cell physiology, we will first have

to learn to communicate. Theoreticians must develop the

vocabulary and intuition associated with genes, proteins

and metabolites. And experimentalists must come to

terms with differential equations, limit cycles and bifur-

cation diagrams. We hope this review will facilitate many

new and fruitful dialogs.

Update
Recent work includes an elegant theoretical and experi-

mental study of NF-kB signaling [61��] and methods for

deducing a molecular wiring diagram from a system’s

transient response to small disturbances [62�,63�].
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