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NEUROBIOLOGY 1: EXCITATION

Introduction
This chapter is based on Hodgkin and Huxley’s Nobel Prize winning model for the squid axon.
Although published over 50 years ago, their model remains today, the paradigm in cellular
neurobiology (Hodgkin and Huxley 1952). The model simulates an axon excised from a squid and
subjected to experiments such as applying stimuli or clamps, or exposure to drugs or changes in
temperature. The model can be used to create experiments to explore a variety of nerve properties,
ranging from the classical phenomena of threshold, summation, refractory period, and impulse
propagation to more modern concepts of channels, gates, and even molecular events. In addition to
faithfully predicting a wide variety of laboratory results, the simulation provides insight about
mechanisms of excitation in a way that is not practical with lab experimentation.

Excitation Properties: Threshold, All or None, Refractory Period

If a nerve is stimulated with weak electrical shocks there is a local disturbance but a propagated
action potential does not occur. As the stimulus intensity is raised the local disturbance gets larger
and finally, at a critical intensity or threshold, an action potential is triggered that propagates along
the length of the nerve axon. The amplitude of the action potential is much larger than the local
stimulus, and its height does not diminish as it travels along the length of the axon. Further
increasing the stimulus strength does not increase the size of the propagated action potential. This is
behavior is called all-or-none. A recovery phase following excitation, when the axon is not
excitable, is called the refractory period.

Building the Model I: The Passive Axon
The electrical excitation characteristics of nerve axons are due to the properties of voltage activated
Na+ and K+ channels spanning the bilayer membrane. Modeling these characteristics is complex,
so we begin with a simpler case: we model the electrical properties of a membrane with channels
that are not voltage activated. This can be approximated in the laboratory by applying toxic agents,
such as tetrodotoxin (TTX) and tetraethylammonium (TEA), to block voltage activated sodium and
potassium channels, respectively.

The excitation behavior of axons arises from the direct effect of the membrane potential on the
movements of ions, and from interactions of the membrane potential with the opening and closing
of voltage activated membrane channels. We address these complications one step at a time
beginning with an axon that is not excitable; thus our simulation corresponds to an axon whose
voltage activated Na+ and K+ channels have been blocked by TTX  and TEA.

The passive axon deals with the first issue: How can movements of diffusing ions within an
electric field  be described? The electric field (i.e. the force on a unit positive charge) in a membrane
is proportional to the more easily measured voltage difference (membrane potential) across the
membrane. The field and the membrane potential arise because the membrane is polarized with a
net negative charge lining the inner surface and an equal but opposite net positive charge on the
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outer surface (see Figure 7 in the Appendix). The relation between membrane potential, E, and the
charge , Q, is simple: as illustrated in Figure 1, E is proportional to Q: E = (1/Cm)Q. The reciprocal
of the proportionality constant is called the membrane capacitance, Cm.

Equation 1

† 

E[volts] =
Q[Coulombs /cm2]
Cm[ farads /cm2]

The capacitance, Cm, is a measure of the
capacity of the membrane to contain charge. In
some ways it is analogous to volume, the
capacity of a structure to contain mass. We
divide Q by Cm to obtain an intensive ‘driving
force’ E, just as we divide mass by volume to
obtain the intensive ‘driving force’,
concentration.

Our task is to compute the accumulation of net
positive charge Q on the inner surface of the
cell membrane after application a stimulating
current Istim , or after changes in

concentrations or conductances of ions. The
membrane potential E is then calculated from
Equation 1. For simplicity we assume that the
electrical stimulus is delivered uniformly to
the entire membrane surface, see Figure 2.
This eliminates any spatial coordinate and
allows us to focus entirely on time as the
independent variable.

Figure 1. Membrane potentials arise because
the membrane is polarized with a net
negative charge lining the inner surface and
an equal but opposite net positive charge on
the outer surface. The relation between
membrane potential, E, and charge ,Q, is
simple: E is proportional to Q. The
reciprocal of proportionality constant is
called the membrane capacitance Cm.

Figure 2. The axon is stimulated uniformly by running the stimulating electrodes along the
entire length of the axon, a common experimental design.
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The model illustrated in Figure 3 has a reservoir of charge Q on the inner surface (the charge on
the outer surface is simply –Q). The stimulus Istim represents a current of positive charge flowing
into the cell through the stimulating electrodes, while the membrane current Imemb consists of
positive charges carried out of the cell by Na+ and K+. The relatively small amount of additional
charge that moves is represented collectively by a leakage current. The membrane potential, E =
Q/Cm, is the force driving the flow of the three kinds of ions. Computations for the three
membrane currents are placed in separate sub programs labeled Na Current, K Current and Leak
Current.

Figure 3 The Hodgkin-Huxley excitation model.

Since the concentrations of Na+, K+ and other ions are not equal on the two sides of a cell
membrane, they tend to diffuse. Since ions carry an electric charge they also tend to drift in
response to electric fields generated by charge separations. How can movements of diffusing ions
within an electric field be described? We begin by taking up a simple case of equilibrium.
Movements will then be described as a response to the departure from equilibrium .

Equilibrium Potentials

Consider the case where a simple, impermeable membrane separates a concentrated and a dilute
solution of KCl. Since each solution contains an equal number of positive and negative charges,
they are electrically neutral and there is no electrical potential difference between the two (i.e. there
is no membrane potential). Now patch in some K+ channels (e.g. gramicidin) that are permeable to
K+ but not permeable to Cl

-
.(Figure 4 ). K+ begins to diffuse from the concentrated (inside) to the

dilute (outside) side.
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Figure 4 K+ channels are patched into a lipid bilayer membrane that separates two KCl
solutions. The solution on the left (inside) is more concentrated.

Figure 5 K+ diffusion separates charge. Figure 6 Equilibrium: Diffusion drift is
balanced by electrical  retardation

As each K+ ion moves across the membrane it delivers a positive charge to the dilute outside and
leaves an uncompensated negative Cl- ion behind on the inside. This makes it more difficult for the
next K+ to move across to the right because it is repelled by the excess + ions on the right and
attracted to the excess - ions on the left. In other words an electrical force opposing the diffusion
begins to develop. Thus a membrane potential arises with the concentrated solution negative
(Figure 5).

The more ions that diffuse separating more positive and negative charges, the more polarized  the
membrane becomes and the larger the retarding electrical force. Finally the electric force (E arrow)
is just equal and opposite to the concentration gradient (K+ arrow). At this point the tendency for
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K+ ions to diffuse from left to right is balanced by the tendency of K ions to drift from right to left
due to electrical forces. The K+ ion is in equilibrium. The magnitude of the membrane potential at
this point is called the equilibrium potential for K+, or EK

+ . This equilibrium state is attained very
rapidly because very few ions have to move to produce large electrical forces. The polarizing ions
(i.e. those that are in excess on either side of the membrane) are confined to a narrow layer adjacent
to the membrane. (The width of this layer is less than 10 nm.) Beyond this thin layer, the bulk
solutions on either side of the membrane are electrically neutral

The larger the concentration difference between the two solutions, the larger the equilibrium
potential. In a way it is an electrical measure of the concentration ‘force’, and it is important for our
purposes because it allows a meaningful comparison of the actual electrical force with the
concentration ‘force’. The equilibrium potential EK for potassium is determined by the ionic
concentrations inside and outside of a cell as (Hille 1992; Benedek and Villars 2000):

Equation 2

† 

EK = Ein - Eout = -
RT
F

ln Kin

Kout

where Ein, Eout, Kin, Kout are the electrical potential and K concentration on the inside and outside,
while R, T, and F are the gas constant, absolute temperature, and Faraday constant respectively.

Each ion species will be present at different concentrations and accordingly will require a different
value for E if they are if they are to be held in equilibrium. The equilibrium potential for Na+ is

Equation 3

† 

ENa = Ein - Eout = -
RT
F

ln Nain

Naout

Ionic Currents Are Proportional to Their Departure from Equilibrium

Using nominal concentrations inside and outside squid axons together with Equation 2 and
Equation 3, we arrive at EK = -77 and ENa = 50 mv. Neither ion is normally in equilibrium, so the
actual membrane potential, E, is neither of these. The difference E-EK  is a measure of the departure
of K from its equilibrium state and we assume the it’s flow is proportional to this departure i.e.

Equation 4

† 

IK = gK (E - EK )

where IK  denotes the potassium current and gK is a proportionality constant called the potassium
conductance. Flow of K+, JK,  can be measured in terms of moles ⋅sec-1⋅cm-2, but here we  describe
it by the flow of positive charge that it carries, i.e. the potassium current, IK,. The two flows are
related by the Faraday constant ( 96,487 Coulombs⋅mol-1, see Table 2) i.e.

Equation 5

† 

IK [amp • cm-2] = F[Coulombs • mol-1] • JK [mol • sec-1• cm-2]

Applying the same arguments to the other ions, we have

 Equation 6

† 

INa = gNa (E - ENa )
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Equation 7

† 

IL = gL (E - EL )

where gNa and gL are the sodium and ‘leak’ ion
conductances. By convention, positive current is always
defined as positive charge moving out of the cell. The
conductances (= 1/resistances are proportional to the
number of channels available to that ion species. The
equilibrium potential of any ion is the value of the
membrane potential (inside - outside) that would be
required to prevent any diffusion of that ion across the
membrane. They are a measure of the concentration ratio on
the two sides of the membrane.

In addition to the ion currents the experimenter may impose
a stimulating flow of positive charge into the cell. If this imposed current has the form of a square
wave, it has the form:

Equation 8 Istep = Intensity*SQUAREPULSE(on time, duration)

The Berkeley Madonna function SQUAREPULSE is either 0 or 1, so that the Intensity specifies the
height of the pulse. The off time is not specified, instead the duration of the pulse is required.

Building the Passive Axon

In the passive axon model, the conductance of each ion remains constant; i.e. it does not depend on
voltage and it does not change with time. Using the data in Table 1 together with the model of
Figure 3:

1. Simulate the response of the membrane potential E when you stimulate the cell with a square
wave of 100 µamps with a 10 msec. duration. An easy way to set up the submodels is to create
a formula icon (round ball) for each of the three currents IK, INa, and IL. Connect an arrow from
E to each of these icons and other arrows from the icons to Imemb. Now, for example, select IK

and then select the menu item Flowchart >Group, and label the submodel icon K current Open
the submodel window, create formula icons for EK and gK , and complete the submodel
flowchart for IK.  Do the same for the other currents. And insert Er / Cm  for the initial value of
Q. When the model is compete, run it and plot E and Istim vs. time. Note that the system is
linear: it depends only on the first power of E. The cell responds with a single time constant.
What is its magnitude? Is the response all or none? Is there a threshold?

2. Illustrate the sensitivity of the system (speed of response and final steady state resting potential)
when you change the parameters listed below. An easy way to do this is to use the Batch Runs
command.  Begin by making simultaneous plots of 0.1, 1. 5, and 25 times the normal value
given in the table for each parameter. This can be done by choosing Geometric Series and
setting the maximum and minimum values for the specific parameter you are investigating. As
you see your results you may want to change these values to illustrate some particular point.
Parameters to change are the membrane capacity, Cm, the number of open sodium and
potassium channels, gNa and gK.
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3. Set Istim = 0 and assume that by some means the resting potential has been set to zero (E = 0 at

time = 0); i.e. the membrane has been ‘short circuited’. Suddenly the short is removed and the
membrane is allowed to charge up to its normal resting potential.

3-1  Simulate the time course of this experiment.

3-2  Compare the amounts of charge carried by Na+, K+, and L+ required to charge up the
membrane

3-3  How much charge in Coulombs moved in to accomplish this? Using the Faraday constant,
translate this into moles of positive ions.

3-4  Show that no matter where you place the initial value of the membrane charge (and
corresponding membrane potential) the potential always returns to the same value.

3-5  Show that changing the capacitance Cm will change the speed of response but will not
effect the final value. How does the speed of response (increase/decrease) when Cm
increases?

3-6  Show that changing the conductances in the same proportion (i.e. increase all of them by a
factor of 10x) will also change the speed of response but will not effect the final value.
How does the speed of response (increase/decrease) when conductances increases?

QUANTITY SYMBOL UNITS VALUE

membrane capacity Cm µfarad/cm2 1

Equilibrium potential for K+ EK mV -77

Equilibrium potential for Na+ ENa mV 50

Equilibrium potential for L+ EL mV -54.4

resting potential Er mV -65

K+ conductance gK mmho/cm2 0.425

Na+ conductance gNa mmho/cm2 0.0167

leakage conductance gL mmho/cm2 0.3 mmho/cm2

Table 1. Data for the passive axon.

Save the model! You will use it next time to patch in voltage activated channels and simulate nerve
excitation.   
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Appendices
Electrophysiological definitions

DEFINITION Symbol Value

Avogadro’s Number N 6.02¥1023
 mol-1

Faraday’s constant F 9.65¥104 C/mol

elementary charge e 1.602¥10-19 C

gas constant R 8.315 J/(mol⋅˚K)

joule J 1 V/C

volt V 1 J/C

ampere A 1 C/s

Table 2. Some electrophysiological constants.

Figure 7. Transferring 1 mole of univalent ions (e.g. K+) across a membrane in 1 second amounts
to a current equal to Faraday’s constant. 1 Joule of energy is required to separate 1
Coulomb of charge across a potential of 1 volt.
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