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LIMIT CYCLE OSCILLATORS 

The Fitzhugh-Nagumo Equations 

The best example of an excitable phenomenon is the firing of a 

nerve: according to the Hodgkin and Huxley equations a sub-

threshold depolarization dies away monotonically, but a super-

threshold depolarization initiates a spike potential. Fitzhugh and 

Nagumo devised a simplified version of the H-H equations that 

describes the essential features of the nerve impulse by only two 

differential equations. 

The ionic current that flows through a nerve membrane is 

controlled by channels whose openings and closings are 

controlled by the local electrical field (voltage gated ion 

channels). For such a conductor, Ohms Law has the form I = 

g(v), where v is the transmembrane voltage and g(v) is the voltage-dependent conductance. Since 

Q = C v , applying d/dt to each side the differential equation for the voltage change is: 

  
C

dv

dt
=

dQ

dt
= I = g(v)      (1) 

where C is the membrane capacitance and I = dQ/dt is the current. 
The 

voltage gate can be either open or shut; that is the conductance is 

bistable, so it has an S-shape.  

 

To turn the bistable conductance equation into an excitable system, 

Fitzhugh defined a slow depolarization variable, w(t), that can move the 

bistable curve up an down. This results in the following system: 

 
dv

dt
= g(v) w + I  (1.2) 

 
dw

dt
=

1
v kw b( )  (1.3) 

where  > 1, and k > 0.  
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METHOD RK4 
 

STARTTIME = 0 
STOPTIME=2000 
DT = 0.2 

 
g = v*(v - v0)*(v -1) 
v' = - g - w + I 

INIT v = 0.2 
 
w' = (v - k*w - b) / tau  

INIT w = -0.1 
 
v0   = 0.15 

I      = 0 
tau  = 40 
k     = 0.5 

b     = 0 
 
vnullcline = - v*(v - v0)*(v - 1) + I 

wnullcline = (v - b) / k 

Figure 1. Phase plane for equations (2) and (3) showing the Nullclines 

that lead to excitable behavior.  

The phase portrait for this system shows how an excitable system 

works: the single equilibrium at the origin is locally stable, but a small 

perturbation causes the system to make a large excursion before 

returning to rest. This sort of phase portrait is typical of excitable 

systems. 

Note that by varying a parameter (e.g. ) the excitable system can be transformed into a bistable 

system in two variables. We will also see that, by adjusting the parameters, the system can 

oscillate in a limit cycle. 

Exercise 1. Use the model equations at the right to make time and phase plane (w vs. 
v) plots and then 

1. Make sliders for the parameters and find a parameter combination that makes 
the system oscillate.  

2. Make a parameter plot of a critical parameter I vs. the amplitude of the 
oscillation to find the ‘bifurcation point’ where the oscillations suddenly appear. 

3. Use the initial condition button, Ic, on the graph window to explore the pattern of 
trajectories. 

4. Use the Fourier Transform button to estimate the period and frequency of the 
oscillation. 

5. Try the RK2 and Stiff solver methods and compare how many iterations 
Madonna™ had to execute. 
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The simplest limit cycles 

It is sometimes easier to think of periodic phenomena as 

taking place on a circle: 0    2 : d /dt = ( ). Let ( ) = 

  A sin( ). Sketch the vector field on the circle showing 

the stability of the equilibrium points and their stability as  

is varied. To do this, ‘snip’ the circle at  = 0 and unwrap it 

so it looks like this   

(Make the length of the vectors proportional to the speed of 

the ‘phase point’.) 

A slightly more elaborate version of the circular limit cycle 

is 

  

dr

dt
= r(1 r),

d

dt
=  

where the radius of the limit cycle, r, is governed by the 

simple logistic equation with amplitude = 1, and the speed around the cycle is  = constant.  

Calcium Oscillations and Cellular Signaling 

Here we will learn how to model the oscillatory dynamics of the calcium second messenger 

system. The reference paper for this problem set is [2]. A reprint is on the course web site.  

  

Figure 2. (a) The calcium oscillator. (b) The shape of the reaction velocity functions. 

Many types of cells, when stimulated by hormones or neurotransmitters, burst into repetitive 

spikes of intracellular calcium release. The period of these oscillations ranges from less than 1 

second to more than 30 minutes. These oscillations are thought to be an important attribute of 
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intra and intercellular signaling mechanisms. From our viewpoint they are a good example of 

"limit cycle" kinetics, and will give us an opportunity to learn how to model periodic chemical 

dynamics.  

Consider the calcium transport system, shown in Figure 2. We write conservation equations for 

the concentration of intracellular calcium, Z, and the concentration in the IP‹-insensitive pool 

(pool 2), Y: 

   

dZ

dt
rate of change
of cytosolic

calcium

= v
0

into
cell

+ v
1

discharge
from pool 1

v
2

transport
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+ v
3

transport
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+ k
f
Y
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kZ
transport

out of cell

   (4)

 
dY

dt
rate of change
of calcium in

pool 2

= v
2

transport
into pool 2

v
3

transport
out of pool 2

k
f
Y

leak from
pool 2

      (5)

 

The fluxes into and out of the IP3 insensitive pool (2) are the key nonlinearities controlling the 

behavior of the system. They are Michaelis-Menten type rate laws: 
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Table 1 lists the parameters of the model, their units, and the values that produce oscillatory 

behavior. 
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Exercise 2. Make a Madonna Flowchart to 
simulate the system.  

1. Show that the period of the oscillations 

decreases as  increases. 

2. Start with a small value of the composite 

parameter (vo + v1) and show that as this 

quantity increases oscillations begin to 
appear only after a critical value is reached 
(this is called a "bifurcation point").  

3. Note that the nullclines (dZ/dt = 0 = dY/dt) of 
the calcium regulation system look very such 
like those of the Fitzhugh-Nagumo equations. 
Indeed, an examination of the nullclines 
shows that, with appropriate tuning of 
parameters, the calcium model can exhibit 
excitable behavior. 

Table 1. Parameter values  

PARAMETER VALUE UNITS 

vo 1 μM/s 

k 10 1/s 

kf 1 1/s 

v1 7.3 μM/s 

V  65 μM/s 

VM3 500 μM/s 

K2 1 μ  

KR 2 μ  

KA 0.9 μ  

m 2 1 

n 2 1 

p 4 1 

Yo 0.1 μ  

Zo 10 μ  

 0.3  
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Nullcline Analysis 

http://www.sosmath.com/diffeq/system/qualitative/qualitative.html 

http://www.sosmath.com/diffeq/system/nonlinear/linearization/linearization.html 

 


